首页> 外文期刊>Pattern recognition letters >A path- and label-cost propagation approach to speedup the training of the optimum-path forest classifier
【24h】

A path- and label-cost propagation approach to speedup the training of the optimum-path forest classifier

机译:一种路径和标签成本的传播方法,可加快最佳路径森林分类器的训练速度

获取原文
获取原文并翻译 | 示例

摘要

In general, pattern recognition techniques require a high computational burden for learning the discriminating functions that are responsible to separate samples from distinct classes. As such, there are several studies that make effort to employ machine learning algorithms in the context of "big data" classification problems. The research on this area ranges from Graphics Processing Units-based implementations to mathematical optimizations, being the main drawback of the former approaches to be dependent on the graphic video card. Here, we propose an architecture-independent optimization approach for the optimum-path forest (OPF) classifier, that is designed using a theoretical formulation that relates the minimum spanning tree with the minimum spanning forest generated by the OPF over the training data-set. The experiments have shown that the approach proposed can be faster than the traditional one in five public datasets, being also as accurate as the original OPF.
机译:通常,模式识别技术需要很高的计算负担才能学习区分函数,这些函数负责将样本从不同的类中分离出来。因此,有一些研究试图在“大数据”分类问题的背景下采用机器学习算法。该领域的研究范围从基于图形处理单元的实现到数学优化,这是以前依赖于图形视频卡的方法的主要缺点。在这里,我们为最优路径森林(OPF)分类器提出了一种与体系结构无关的优化方法,该方法是使用理论公式设计的,该公式将最小生成树与OPF在训练数据集上生成的最小生成森林相关联。实验表明,所提出的方法可以比传统的五分之一公共数据集更快,并且与原始OPF一样准确。

著录项

  • 来源
    《Pattern recognition letters》 |2014年第15期|121-127|共7页
  • 作者单位

    Departamento de Computacao, Unesp - Univ Estadual Paulista, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01 17033-360, Bauru, Brazil;

    Departamento de Computacao, Unesp - Univ Estadual Paulista, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01 17033-360, Bauru, Brazil;

    Departamento de Engenharia Eletrica, Unesp - Univ Estadual Paulista, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01 17033-360, Bauru, Brazil;

    Institute de Computacao, Universidade Estadual de Campinas, Av. Albert Einstein, 1251 13083-852, Campinas, Brazil;

    Faculdade de Eng. Eletrica e Computacao, Universidade Estadual de Campinas, Av. Albert Einstein, 400 13083-852, Campinas, Brazil;

    Faculdade de Eng. Eletrica e Computacao, Universidade Estadual de Campinas, Av. Albert Einstein, 400 13083-852, Campinas, Brazil;

    Programa de Pos-Craduacao em Informatica Aplicada, Universidade de Fortaleza, Av. Washington Soares, 1321 60811-905, Fortaleza, Brazil;

    Instituto de Eng. Mecanica e Gestao Industrial, Departamento de Eng. Mecanica, Faculdade de Engenharia, Universidade do Porto, Rua Doutor Roberto Frias s,4200-465 Porto, Portugal;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Machine learning; Pattern recognition; Optimum-path forest;

    机译:机器学习;模式识别;最佳路径森林;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号