首页> 外文会议>Multiple classifier systems >Improving Accuracy and Speed of Optimum-Path Forest Classifier Using Combination of Disjoint Training Subsets
【24h】

Improving Accuracy and Speed of Optimum-Path Forest Classifier Using Combination of Disjoint Training Subsets

机译:结合不相交训练子集提高最佳路径森林分类器的准确性和速度

获取原文
获取原文并翻译 | 示例

摘要

The Optimum-Path Forest (OPF) classifier is a recent and promising method for pattern recognition, with a fast training algorithm and good accuracy results. Therefore, the investigation of a combining method for this kind of classifier can be important for many applications. In this paper we report a fast method to combine OPF-based classifiers trained with disjoint training subsets. Given a fixed number of subsets, the algorithm chooses random samples, without replacement, from the original training set. Each subset accuracy is improved by a learning procedure. The final decision is given by majority vote. Experiments with simulated and real data sets showed that the proposed combining method is more efficient and effective than naive approach provided some conditions. It was also showed that OPF training step runs faster for a series of small subsets than for the whole training set. The combining scheme was also designed to support parallel or distributed processing, speeding up the procedure even more.
机译:最优路径森林(OPF)分类器是一种模式识别的最新方法,具有快速的训练算法和良好的精度结果。因此,对于这种分类器的组合方法的研究对于许多应用而言可能是重要的。在本文中,我们报告了一种结合不连续训练子集训练的基于OPF的分类器的快速方法。给定固定数量的子集,该算法从原始训练集中选择随机样本而不进行替换。每个子集的准确性通过学习过程得以提高。最终决定由多数票决定。模拟和真实数据集的实验表明,所提出的组合方法比提供某些条件的朴素方法更有效。还表明,OPF训练步骤对于一系列小的子集比整个训练集运行得更快。组合方案还设计为支持并行或分布式处理,从而进一步加快了过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号