首页> 外文期刊>Pattern recognition letters >Comparison of different approaches to visual terrain classification for outdoor mobile robots
【24h】

Comparison of different approaches to visual terrain classification for outdoor mobile robots

机译:户外移动机器人视觉地形分类不同方法的比较

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a comparison of multiple approaches to visual terrain classification for outdoor mobile robots based on different color, texture and local features. We introduce and compare three novel composite descriptors called CEDD, FCTH and JCD, with traditional color and texture descriptors, such as LTP, SCD, EHD and a descriptor called CSD-HTD generated by late fusion method. We also test three BOW models based on SIFT, SURF and ORB, respectively. We used two terrain classification datasets of which the images were captured from outdoor moving robots under different weather and ground conditions. Hence some of the images are blurred or unideally exposed. We utilize ELM, SVM and NN for classification to evaluate the performance of different combinations of image descriptors and classifiers. Experiments demonstrate that JCD can represent different terrain images with significant inter-class discrepancies, and ELM has mild optimization constraints and obtains better generalization performance. Results show that the approach based on JCD descriptor and ELM classifier performs best in term of classification effectiveness and it is suitable for real-time outdoor visual terrain classification.
机译:在本文中,我们比较了基于不同颜色,纹理和局部特征的户外移动机器人视觉地形分类的多种方法。我们介绍并比较了三种新颖的复合描述符,即CEDD,FCTH和JCD,以及传统的颜色和纹理描述符,如LTP,SCD,EHD和由后期融合方法生成的称为CSD-HTD的描述符。我们还分别测试了基于SIFT,SURF和ORB的三个BOW模型。我们使用了两个地形分类数据集,其中的图像是在不同天气和地面条件下从室外移动机器人捕获的图像。因此,某些图像模糊或不理想地曝光。我们利用ELM,SVM和NN进行分类,以评估图像描述符和分类器不同组合的性能。实验表明,JCD可以代表具有明显的类间差异的不同地形图像,并且ELM具有适度的优化约束并获得更好的泛化性能。结果表明,基于JCD描述符和ELM分类器的分类方法在分类效果方面表现最好,适用于实时的户外视觉地形分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号