首页> 外文期刊>Pattern recognition letters >Spatio-temporal filter for dense real-time Scene Flow estimation of dynamic environments using a moving RGB-D camera
【24h】

Spatio-temporal filter for dense real-time Scene Flow estimation of dynamic environments using a moving RGB-D camera

机译:时空滤波器,用于使用移动RGB-D摄像机进行动态环境的密集实时场景流估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present an automated method for dense real-time Scene Flow estimation of dynamic scenes using Microsoft's depth sensor Kinect. The main contribution of the proposed method is that the estimation is fast while avoiding over-smoothing objects boundaries, occlusion problem and sensor noise without any hardware modification. In particular, the proposed method improves the quality of the device's depth and computed Optical Flow by applying an adaptive spatial filter combined with 3D Kalman filter for temporal smoothness and robustness at object edges. Quantitative evaluations show that the proposed method can produce Scene Flow with higher accuracy and low computational time compared to the state-of-the-art methods. (C) 2015 Elsevier By. All rights reserved,
机译:在本文中,我们提出了一种使用Microsoft的深度传感器Kinect进行动态场景的密集实时场景流估计的自动化方法。所提出方法的主要贡献在于,在无需任何硬件修改的情况下,估计速度很快,同时避免了平滑的对象边界,遮挡问题和传感器噪声。尤其是,该方法通过将自适应空间滤波器与3D卡尔曼滤波器结合使用以提高物体边缘处的时间平滑度和鲁棒性,从而提高了设备​​深度和计算的光流质量。定量评估表明,与最新方法相比,该方法可以产生更高的精度和更少的计算时间的场景流。 (C)2015 Elsevier By。版权所有,

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号