首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Real-Time RGB-D Camera Pose Estimation in Novel Scenes Using a Relocalisation Cascade
【24h】

Real-Time RGB-D Camera Pose Estimation in Novel Scenes Using a Relocalisation Cascade

机译:使用retocalisation级联的新颖场景中的实时RGB-D相机介绍

获取原文
获取原文并翻译 | 示例

摘要

Camera pose estimation is an important problem in computer vision, with applications as diverse as simultaneous localisation and mapping, virtual/augmented reality and navigation. Common techniques match the current image against keyframes with known poses coming from a tracker, directly regress the pose, or establish correspondences between keypoints in the current image and points in the scene in order to estimate the pose. In recent years, regression forests have become a popular alternative to establish such correspondences. They achieve accurate results, but have traditionally needed to be trained offline on the target scene, preventing relocalisation in new environments. Recently, we showed how to circumvent this limitation by adapting a pre-trained forest to a new scene on the fly. The adapted forests achieved relocalisation performance that was on par with that of offline forests, and our approach was able to estimate the camera pose in close to real time, which made it desirable for systems that require online relocalisation. In this paper, we present an extension of this work that achieves significantly better relocalisation performance whilst running fully in real time. To achieve this, we make several changes to the original approach: (i) instead of simply accepting the camera pose hypothesis produced by RANSAC without question, we make it possible to score the final few hypotheses it considers using a geometric approach and select the most promising one; (ii) we chain several instantiations of our relocaliser (with different parameter settings) together in a cascade, allowing us to try faster but less accurate relocalisation first, only falling back to slower, more accurate relocalisation as necessary; and (iii) we tune the parameters of our cascade, and the individual relocalisers it contains, to achieve effective overall performance. Taken together, these changes allow us to significantly improve upon the performance our original state-of-the-art method was able to achieve on the well-known 7-Scenes and Stanford 4 Scenes benchmarks. As additional contributions, we present a novel way of visualising the internal behaviour of our forests, and use the insights gleaned from this to show how to entirely circumvent the need to pre-train a forest on a generic scene.
机译:相机姿态估计是计算机愿景中的一个重要问题,具有多样化的应用,作为同时定位和映射,虚拟/增强现实和导航。公共技术与来自跟踪器的已知姿势的关键帧匹配当前图像,直接回归姿势,或在当前图像中的关键点之间建立对应关系,并且在场景中的点以估计姿势。近年来,回归森林已成为建立此类信念的热门替代品。它们实现了准确的结果,但传统上需要在目标场景中离线训练,防止在新环境中剖析。最近,我们展示了如何通过将训练有素的森林调整到一个新场景来绕过这种限制。适应的森林实现了与离线森林相当的重新调查表现,我们的方法能够估计相机姿势接近实时,这使得需要在线重新定位的系统。在本文中,我们展示了这项工作的延伸,这在实时运行时实现了明显更好的重新定位性能。为实现这一目标,我们对原始方法进行了多次变化:(i)而不是简单地接受由Ransac产生的相机姿势假设,而不是毫无疑问,我们可以获得使用几何方法考虑的最终的一些假设,并选择最多承诺的; (ii)我们在级联中将我们的RESOCALISER的几种实例化(具有不同的参数设置),允许我们首先尝试更快但更准确的重新定位,仅落回较慢,更准确地重新定位; (iii)我们调整了我们级联的参数,以及它包含的个人剖视参数,以实现有效的整体性能。在一起,这些变化使我们能够显着提高我们最初的最先进方法能够在众所周知的7场景和斯坦福4场景基准测试中实现。作为额外的贡献,我们提出了一种可视化我们森林内部行为的新方式,并使用从此获取的洞察力来展示如何完全规避在通用场景上预先训练森林的需要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号