首页> 外文期刊>Pattern recognition letters >Regularized set-to-set distance metric learning for hyperspectral image classification
【24h】

Regularized set-to-set distance metric learning for hyperspectral image classification

机译:高光谱图像分类的规则化集对集距离度量学习

获取原文
获取原文并翻译 | 示例

摘要

Combining the spectral and spatial information, we propose a regularized set-to-set distance metric learning method (RSSDML) for the hyperspectral image (HSI) classification. It first performs a local pixel neighborhood preserving embedding to reduce the dimensionality and meanwhile to preserve the local similarity structures of HSI, and then puts each target spectral pixel and its spatial neighbors into a set, and measures the distance between different sets to reveal the overall differences of different target spectral pixels. In the computation of the set-to-set distance, a regularization strategy is used to differentiate individual pixels in a pixel set and to improve the set-based metric relations. Exploiting both the correlations between neighboring pixels in a pixel set and the similarities between different pixel sets, the proposed RSSDML dramatically improves traditional point-based and set-based metric learning methods and provides better classification results than some state-of-the-art spatial-spectral classifiers on two benchmark hyperspectral data sets. (C) 2016 Elsevier B.V. All rights reserved.
机译:结合光谱和空间信息,我们提出了一种针对高光谱图像(HSI)分类的规则化的集对集距离度量学习方法(RSSDML)。它首先执行局部像素邻域保留嵌入以降低维数,同时保留HSI的局部相似性结构,然后将每个目标光谱像素及其空间邻居放入一个集合中,并测量不同集合之间的距离以揭示整体不同目标光谱像素的差异。在计算集合到集合的距离时,使用正则化策略来区分像素集中的各个像素并改善基于集合的度量关系。利用像素集中相邻像素之间的相关性以及不同像素集之间的相似性,所提出的RSSDML大大改进了传统的基于点和基于集的度量学习方法,并提供了比某些最新空间更好的分类结果两个基准高光谱数据集上的光谱分类器。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号