首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Set-to-Set Distance-Based Spectral–Spatial Classification of Hyperspectral Images
【24h】

Set-to-Set Distance-Based Spectral–Spatial Classification of Hyperspectral Images

机译:基于距离的高光谱图像光谱空间分类

获取原文
获取原文并翻译 | 示例

摘要

A novel set-to-set distance-based spectral-spatial classification method for hyperspectral images (HSIs) is proposed. In HSIs, the spatially connected and spectrally similar pixels within each homogeneous region can be considered as one set of test samples, i.e., a test set, which should belong to the same class. In addition, each class of labeled pixels can be regarded as one set of training samples, i.e., a training set. Therefore, it is a natural consideration in the proposed method to measure the similarity between test and training sets via specific set-based distance criteria and then decide the classification label for each test set, accordingly. Specifically, the superpixel algorithm-based oversegmentation technique jointly exploits both the spatial similarity and structural information to first divide the HSI into multiple perceptually uniform regions. As a result, each segmented region corresponds to one test set. Then, each test/training set is represented with an affine hull (AH) model, which utilizes both the similarity and variance of pixels within each set to adaptively characterize the set. Finally, the class label for each test set is determined based on the closest geometry distance between test and training AHs. Experimental results on real HSI data sets demonstrate the superiority of the proposed algorithm over several well-known classification approaches, in terms of classification accuracy and computational speed.
机译:提出了一种新的基于距离的基于集的高光谱图像空间分类方法。在HSI中,每个同质区域内的空间连接且在光谱上相似的像素可以被认为是一组测试样本,即测试集,其应该属于同一类别。另外,每一类标记像素可被视为一组训练样本,即训练集。因此,在所提出的方法中,自然要考虑的是,通过基于特定集合的距离标准来测量测试集和训练集之间的相似度,然后相应地确定每个测试集的分类标签。具体而言,基于超像素算法的过分割技术共同利用了空间相似性和结构信息,以首先将HSI划分为多个感知上均匀的区域。结果,每个分割区域对应一个测试集。然后,用仿射外壳(AH)模型表示每个测试/训练集,该模型利用每个集合内像素的相似度和方差来自适应地表征集合。最后,根据测试和训练AH之间最接近的几何距离确定每个测试集的类别标签。在真实HSI数据集上的实验结果证明,在分类准确性和计算速度方面,该算法优于几种著名的分类方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号