首页> 外文期刊>Pattern recognition letters >Categorizing plant images at the variety level: Did you say fine-grained?
【24h】

Categorizing plant images at the variety level: Did you say fine-grained?

机译:在品种级别上对植物图像进行分类:您说的是细粒度的吗?

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the problem of categorizing plant images at the variety level, i.e. at a finer taxonomic grain than state-of-the-art studies usually working at the species level. It therefore introduces two new evaluation datasets of agro-biodiversity interest, each being related to concrete scenarios on large-scale plant resources. They have been chosen so as to involve very different acquisition protocols and visual patterns in order to evaluate if state-of-the-art image classification techniques can generalize to such specific contexts and avoid the cost of building specific ad-hoc solutions. The first one is a collection of 2071 pictures of loose rice seeds built from 95 accessions kept in a bank of seeds. The second one is a collection of 2037 pictures of grape leaves taken in the fields and belonging to 34 varieties among the most commonly ones used in viticulture. Both datasets exhibit a very low inter-class variability resulting in two challenging fine-grained classification tasks, even for expert human operators. A baseline experimental study was conducted on the two datasets using the two most effective families of classification techniques in the state-of-the-art, i.e. convolutional neural networks on one side and fisher vectors-based discriminant models on the other side. It shows that the achieved classification performance is very different between the two problems. It is actually pretty bad for the grape leaves collection but much better in the case of the rice seeds collection for which the acquisition protocol was much more constrained and the morphological variability more visible. The conclusion is that automatically identifying plant varieties might already be feasible for some specific scenarios and in controlled environments but that it is still an open problem in the general case. (C) 2016 Published by Elsevier B.V.
机译:本文解决了在品种级别上对植物图像进行分类的问题,即与通常在物种级别上进行的最新研究相比,在更细的分类颗粒上。因此,它引入了两个新的农业生物多样性利益评估数据集,每个都与大规模植物资源的具体情况有关。选择它们是为了涉及非常不同的采集协议和视觉模式,以便评估最新的图像分类技术是否可以推广到此类特定上下文并避免构建特定的临时解决方案的成本。第一个是收集的2071张松散的水稻种子照片,这些种子是由保存在种子库中的95种种质构建而成的。第二张是在田间拍摄的2037张葡萄叶图片集,属于葡萄栽培中最常用的34个品种。这两个数据集都显示出非常低的类间变异性,即使对于专业的人工操作者,也导致两项具有挑战性的细粒度分类任务。使用最新技术中最有效的两种分类技术对两个数据集进行了基线实验研究,即一侧是卷积神经网络,另一侧是基于Fisher向量的判别模型。结果表明,在两个问题之间,实现的分类性能差异很大。对于葡萄叶采集来说,这实际上是非常糟糕的,但是对于水稻种子采集来说,情况要好得多,因为对于水稻种子采集而言,采集方案受到更多的限制,并且形态变异更加明显。结论是,在某些特定情况下和在受控环境中,自动识别植物品种可能已经可行,但在一般情况下仍然是一个未解决的问题。 (C)2016由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号