首页> 外文期刊>Neurocomputing >Fine-grained visual categorization of butterfly specimens at sub-species level via a convolutional neural network with skip-connections
【24h】

Fine-grained visual categorization of butterfly specimens at sub-species level via a convolutional neural network with skip-connections

机译:通过带跳过连接的卷积神经网络对蝶形标本进行亚种级别的细粒度视觉分类

获取原文
获取原文并翻译 | 示例

摘要

Fine-grained visual categorization often suffers from the challenges that the subordinate categories within an entry-level category can only be distinguished by subtler discriminations. It demands an effective algorithm to learn a multiple-perspective density distribution for precious categorization. To shape a coarse-to-fine object perception, a hierarchical convolutional neural network (CNN) denoting the skip-connections convolutional neural network (S-CCNN) was proposed, focusing on a butterfly domain at subspecies level due to the fine-grained structure of the category taxonomy. Specifically, based on the serial backbone, three skip-connections with Grating layers are established to link the earlier layers and upper layers of network, and integrated with DropConnect, exponential linear unit (ELU), and local response normalization (LRN) to alleviate over-fitting and vanishing gradient. Benefitting from the long-span skip-connections, coarse-grained context with orientation descriptions and finer-grained context with semantic representations can be both took into consideration, and they are jointly incorporated into framework. S-CCNN can achieve the cross-utilization of object-level and part-level representations, and its rationality were evidenced with both theory and practice. For effectness verification, a total of 24,836 lab-made images of butterfly specimens spanning 56 sub-species are utilized as testing samples, while 173,852 augmented images are employed for model training. S-CCNN delivers a consistent and significant boost in performance, i.e., validation accuracy achieved 94.17% and testing accuracy achieved 93.36%, which outperformed state-of-the-arts. S-CCNN can easily relish accuracy gains from skip-connections in fine-grained visual categorization of butterfly sub-species, without any bells and whistles. (C) 2019 Elsevier B.V. All rights reserved.
机译:细粒度的视觉分类通常会遇到以下挑战:入门级类别中的下级类别只能通过微妙的区分来区分。它需要一种有效的算法来学习用于密度分类的多视角密度分布。为了塑造从粗糙到精细的物体感知,提出了一种表示跳过连接卷积神经网络(S-CCNN)的层次卷积神经网络(CNN),由于其细粒度结构,它着重于亚种级别的蝶形域分类法。具体来说,基于串行骨干网,建立了三个与光栅层的跳过连接以链接网络的较早层和上层,并与DropConnect,指数线性单元(ELU)和本地响应规范化(LRN)集成在一起,以缓解拟合和消失的梯度。得益于大跨度的跳过连接,可以同时考虑具有方向描述的粗粒度上下文和具有语义表示的细粒度上下文,并将它们共同合并到框架中。 S-CCNN可以实现对象级和部分级表示的交叉利用,其合理性在理论和实践上都得到了证明。为了进行有效性验证,将跨越56个亚种的总共24,836个蝴蝶样本的实验室制作图像用作测试样本,而将173,852个增强图像用于模型训练。 S-CCNN带来了持续而显着的性能提升,即验证精度达到了94.17%,测试精度达到了93.36%,这超过了最新技术。 S-CCNN可以轻松地从蝶形亚种的细粒度视觉分类中获得跳过连接带来的准确性提升,而没有任何风吹草动。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第7期|295-313|共19页
  • 作者

  • 作者单位

    China Agr Univ Coll Informat & Elect Engn Beijing 100083 Peoples R China|Minist Agr & Rural Affairs Key Lab Agr Informatizat Standardizat Beijing 100083 Peoples R China;

    Minist Agr & Rural Affairs Key Lab Agr Informatizat Standardizat Beijing 100083 Peoples R China;

    Minist Agr & Rural Affairs Key Lab Agr Informatizat Standardizat Beijing 100083 Peoples R China|China Agr Univ Coll Sci Beijing 100083 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Convolutional neural network; Skip-connection; Fine-grained visual categorization; Deep learning; Butterfly sub-species;

    机译:卷积神经网络跳过连接;细粒度的视觉分类;深度学习;蝴蝶亚种;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号