首页> 外文期刊>Pattern recognition letters >A coupled discriminative dictionary and transformation learning approach with applications to cross domain matching
【24h】

A coupled discriminative dictionary and transformation learning approach with applications to cross domain matching

机译:判别词典和转换学习相结合的方法及其在跨域匹配中的应用

获取原文
获取原文并翻译 | 示例

摘要

Cross domain and cross-modal matching has many applications in the field of computer vision and pattern recognition. A few examples are heterogeneous face recognition, cross view action recognition, etc. This is a very challenging task since the data in two domains can differ significantly. In this work, we propose a coupled dictionary and transformation learning approach that models the relationship between the data in both domains. The approach learns a pair of transformation matrices that map the data in the two domains in such a manner that they share common sparse representations with respect to their own dictionaries in the transformed space. The dictionaries for the two domains are learnt in a coupled manner with an additional discriminative term to ensure improved recognition performance. The dictionaries and the transformation matrices are jointly updated in an iterative manner. The applicability of the proposed approach is illustrated by evaluating its performance on different challenging tasks: face recognition across pose, illumination and resolution, heterogeneous face recognition and cross view action recognition. Extensive experiments on five datasets namely, CMU-PIE, Multi-PIE, ChokePoint, HFB and IXMAS datasets and comparisons with several state-of-the-art approaches show the effectiveness of the proposed approach. (C) 2015 Elsevier B.V. All rights reserved.
机译:跨域和跨模式匹配在计算机视觉和模式识别领域具有许多应用。一些示例是异构面部识别,交叉视图动作识别等。这是一项非常具有挑战性的任务,因为两个域中的数据可能存在显着差异。在这项工作中,我们提出了一种结合字典和转换学习方法的方法,该方法对两个域中数据之间的关系进行建模。该方法学习一对转换矩阵,该转换矩阵以这样的方式映射两个域中的数据:它们相对于转换空间中自己的字典共享通用的稀疏表示。这两个域的词典与其他判别项结合使用,以确保提高识别性能。字典和变换矩阵以迭代方式共同更新。通过评估其在不同挑战性任务上的性能来说明所提出方法的适用性:跨姿势,照明和分辨率的人脸识别,异构人脸识别和交叉视图动作识别。在五个数据集(即CMU-PIE,Multi-PIE,ChokePoint,HFB和IXMAS数据集)上进行的广泛实验以及与几种最新方法的比较证明了该方法的有效性。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号