首页> 外文期刊>Pattern recognition letters >Predictive complex event processing based on evolving Bayesian networks
【24h】

Predictive complex event processing based on evolving Bayesian networks

机译:基于演化贝叶斯网络的预测复杂事件处理

获取原文
获取原文并翻译 | 示例

摘要

In the Big Data era, large volumes of data are continuously and rapidly generated from sensor networks, social network, the Internet, etc. Predicting from online event stream is an important task since users usually need to predict some future states and take some actions in advance. Many applications need online prediction models which can evolve automatically with data distribution drift and algorithms which can support single-pass processing of data, which are still faced with many challenges. In this paper, the authors propose a predictive complex event processing method based on evolving Bayesian networks. The Bayesian model is designed based on event type and time with inference method based on Gaussian mixture model and EM algorithm. When learning the structure of Bayesian network from event streams, this method supports calculating score metric incrementally when new data is arrived or edges in the network are changed. Evolving Bayesian network structure is supported based on hill-climbing method. The system can continuously monitor the Bayesian network model and modify it if it is found to be not appropriate for the new incoming data. The method of this paper is evaluated in road traffic domain with both real application data and data produced by a simulated transportation system. The total percentage error is 8.12% for real data and 7.78% for simulated data, while the best result for other methods is 11.79% for real data and 14.59% for simulated data. The experimental evaluations show that this method is effective for predictive complex event processing and it outperforms other popular methods when processing traffic prediction in intelligent transportation systems. (c) 2017 Elsevier B.V. All rights reserved.
机译:在大数据时代,传感器网络,社交网络,互联网等不断且快速地生成大量数据。根据在线事件流进行预测是一项重要的任务,因为用户通常需要预测一些未来的状态并采取一些措施。预先。许多应用程序需要可以随数据分布漂移自动演变的在线预测模型,以及可以支持数据的单次通过处理的算法,这些仍然面临许多挑战。在本文中,作者提出了一种基于演化贝叶斯网络的预测复杂事件处理方法。贝叶斯模型是基于事件类型和时间而设计的,基于高斯混合模型和EM算法的推理方法。当从事件流中学习贝叶斯网络的结构时,此方法支持在到达新数据或更改网络边缘时逐步计算分数度量。支持基于爬山方法的演化贝叶斯网络结构。如果发现贝叶斯网络模型不适用于新的传入数据,则系统可以对其进行连续监视并对其进行修改。本文的方法是在道路交通领域中使用实际应用数据和模拟交通系统生成的数据进行评估的。真实数据的总百分比误差为8.12%,模拟数据的总百分比误差为7.78%,而其他方法的最佳结果是真实数据的11.79%和模拟数据的14.59%。实验评估表明,该方法对于复杂事件的预测是有效的,并且在智能交通系统中处理交通预测时,其性能优于其他流行方法。 (c)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号