首页> 美国政府科技报告 >Bayesian Mixed-Membership Models of Complex and Evolving Networks
【24h】

Bayesian Mixed-Membership Models of Complex and Evolving Networks

机译:复杂和进化网络的贝叶斯混合隶属模型

获取原文

摘要

This thesis provides a methodological framework for the statistical analysis of complex graphs and dynamic networks. In it, I develop probabilistic algorithms that generate, evolve and integrate a heterogeneous collection of graphs, I study the statistical models these algorithms implicitly specify, and I develop strategies for estimating the set of quantities on which they depend in the context of applications to social and biological networks.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号