首页> 外文期刊>ACM transactions on knowledge discovery from data >Mining Overlapping Communities and Inner Role Assignments through Bayesian Mixed-Membership Models of Networks with Context-Dependent Interactions
【24h】

Mining Overlapping Communities and Inner Role Assignments through Bayesian Mixed-Membership Models of Networks with Context-Dependent Interactions

机译:通过具有上下文相关交互的网络的贝叶斯混合成员身份模型挖掘重叠社区和内部角色分配

获取原文
获取原文并翻译 | 示例

摘要

Community discovery and role assignment have been recently integrated into an unsupervised approach for the exploratory analysis of overlapping communities and inner roles in networks. However, the formation of ties in these prototypical research efforts is not truly realistic, since it does not account for a fundamental aspect of link establishment in real-world networks, i.e., the explicative reasons that cause interactions among nodes. Such reasons can be interpreted as generic requirements of nodes, that are met by other nodes and essentially pertain both to the nodes themselves and to their interaction contexts (i.e., the respective communities and roles).
机译:社区发现和角色分配最近已集成到一种无监督方法中,用于对网络中重叠的社区和内部角色进行探索性分析。但是,在这些原型研究工作中建立联系并不是真正现实的,因为它没有考虑到现实网络中链接建立的基本方面,即导致节点之间交互的显性原因。可以将这些原因解释为节点的一般要求,这些要求由其他节点满足,并且本质上既涉及节点本身,也涉及其交互上下文(即各个社区和角色)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号