首页> 外文期刊>Pattern recognition letters >Optimized robust multi-sensor scheme for simultaneous video and image iris recognition
【24h】

Optimized robust multi-sensor scheme for simultaneous video and image iris recognition

机译:优化的鲁棒多传感器方案,可同时识别视频和图像虹膜

获取原文
获取原文并翻译 | 示例

摘要

Today, recognition of people by the iris is widely used when secure identification of a person is needed. Iris biometric identification systems should be able to work with heterogeneous iris images captured by different types of iris sensors. However, stable iris recognition systems that are effective for all types of iris cameras are not readily available. These systems should also be able to work simultaneously with images and video frames. In this work, we present an optimized robust multi-sensor scheme with a strategy that combines video frame quality evaluation with robust fusion methods at segmentation level for simultaneous video and image iris recognition. As part of the proposed scheme, we presented a Modified Laplacian Pyramid-based fusion method at segmentation stage. Experimental results on the Casia-V3-Interval, Casia-V4-Thousand, Ubiris-V1 and MBGC-V2 databases show that the optimized robust scheme increases recognition accuracy, and is robust to different types of iris sensors and able to simultaneously work with video and images. (C) 2017 Elsevier B.V. All rights reserved.
机译:如今,当需要对人进行安全识别时,虹膜对人的识别被广泛使用。虹膜生物识别系统应该能够与由不同类型的虹膜传感器捕获的异类虹膜图像一起使用。然而,对于所有类型的虹膜照相机有效的稳定虹膜识别系统并不容易获得。这些系统还应该能够同时处理图像和视频帧。在这项工作中,我们提出了一种优化的鲁棒多传感器方案,该方案将视频帧质量评估与鲁棒融合方法结合在分段级别上,用于同时进行视频和图像虹膜识别。作为拟议方案的一部分,我们在分割阶段提出了一种改进的基于拉普拉斯金字塔的融合方法。在Casia-V3-Interval,Casia-V4-Thousand,Ubiris-V1和MBGC-V2数据库上的实验结果表明,优化的鲁棒方案可提高识别精度,并且对不同类型的虹膜传感器具有鲁棒性,并且能够与视频同时工作和图像。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号