首页> 外文会议>Image and Signal Processing and Analysis, 2009. ISPA 2009 >Evolutionary optimization of JPEG quantization tables for compressing iris polar images in iris recognition systems
【24h】

Evolutionary optimization of JPEG quantization tables for compressing iris polar images in iris recognition systems

机译:用于压缩虹膜识别系统中虹膜极性图像的JPEG量化表的进化优化

获取原文

摘要

Recognition performance in iris biometrics strongly depends on the image quality. The appliance of compression algorithms to iris images raises the question whether it is possible to adapt those algorithms for biometrical purposes. In this work, we propose customized JPEG quantization matrices for compressing iris polar images to positively impact the recognition performance. We build on previous research and apply a genetic algorithm to obtain specialized matrices for destined compression ratios. The proposed tables are able to clearly outperform JPEG's standard quantization matrix. Moreover, some matrices also provide superior results in terms of ROC characteristics as compared to the reference scenario using uncompressed images. This leads to clearly lower error rates while also significantly reducing the necessary amount of data storage and transmission.
机译:虹膜生物识别中的识别性能在很大程度上取决于图像质量。将压缩算法应用于虹膜图像提出了一个问题,即是否有可能将这些算法用于生物统计学目的。在这项工作中,我们提出了定制的JPEG量化矩阵,用于压缩虹膜极性图像以积极影响识别性能。我们以先前的研究为基础,并应用遗传算法来获得用于指定压缩比的专用矩阵。建议的表格能够明显胜过JPEG的标准量化矩阵。此外,与使用未压缩图像的参考方案相比,某些矩阵在ROC特性方面也提供了出色的结果。这明显降低了错误率,同时也大大减少了必要的数据存储和传输量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号