首页> 外文期刊>Pattern Analysis and Applications >A rotation based regularization method for semi-supervised learning
【24h】

A rotation based regularization method for semi-supervised learning

机译:基于旋转的半监督学习正规化方法

获取原文
获取原文并翻译 | 示例

摘要

In manifold learning, the intrinsic geometry of the manifold is explored and preserved by identifying the optimal local neighborhood around each observation. It is well known that when a Riemannian manifold is unfolded correctly, the observations lying spatially near to the manifold, should remain near on the lower dimension as well. Due to the nonlinear properties of manifold around each observation, finding such optimal neighborhood on the manifold is a challenge. Thus, a sub-optimal neighborhood may lead to erroneous representation and incorrect inferences. In this paper, we propose a rotation-based affinity metric for accurate graph Laplacian approximation. It exploits the property of aligned tangent spaces of observations in an optimal neighborhood to approximate correct affinity between them. Extensive experiments on both synthetic and real world datasets have been performed. It is observed that proposed method outperforms existing nonlinear dimensionality reduction techniques in low-dimensional representation for synthetic datasets. The results on real world datasets like COVID-19 prove that our approach increases the accuracy of classification by enhancing Laplacian regularization.
机译:在歧管学习中,通过识别每个观察周围的最佳本地邻域来探索歧管的固有几何形状。众所周知,当Riemannian歧管正确地展开时,在空间靠近歧管附近的观察结果也应保持接近较低尺寸。由于每个观察周围的歧管的非线性性质,在歧管上找到这种最佳邻域是一个挑战。因此,子最优邻域可能导致错误的表示和不正确的推论。在本文中,我们提出了一种基于旋转的亲和度量,用于准确的图拉普拉斯近似。它利用了在最佳邻域中观察的对齐切线空间的属性,以近似于它们之间的正确亲和力。已经进行了关于合成和现实世界数据集的广泛实验。观察到,所提出的方法优于合成数据集的低维表示中存在的现有非线性维度降低技术。关于Covid-19这样的真实世界数据集的结果证明我们的方法通过增强拉普拉斯正规化来提高分类的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号