首页> 外文期刊>Pattern Analysis and Applications >Learning discriminative hashing codes for cross-modal retrieval based on multi-view features
【24h】

Learning discriminative hashing codes for cross-modal retrieval based on multi-view features

机译:基于多视图功能的跨模态检索学习辨别性散列码

获取原文
获取原文并翻译 | 示例

摘要

Hashing techniques have been applied broadly in retrieval tasks due to their low storage requirements and high speed of processing. Many hashing methods based on a single view have been extensively studied for information retrieval. However, the representation capacity of a single view is insufficient and some discriminative information is not captured, which results in limited improvement. In this paper, we employ multiple views to represent images and texts for enriching the feature information. Our framework exploits the complementary information among multiple views to better learn the discriminative compact hash codes. A discrete hashing learning framework that jointly performs classifier learning and subspace learning is proposed to complete multiple search tasks simultaneously. Our framework includes two stages, namely a kernelization process and a quantization process. Kernelization aims to find a common subspace where multi-view features can be fused. The quantization stage is designed to learn discriminative unified hashing codes. Extensive experiments are performed on single-label datasets (WiKi and MMED) and multi-label datasets (MIRFlickr and NUS-WIDE), and the experimental results indicate the superiority of our method compared with the state-of-the-art methods.
机译:由于其较低的存储要求和高处理速度,散列技术在检索任务中广泛应用。基于单个视图的许多散列方法已经广泛研究了信息检索。然而,单个视图的表示能力不足,没有捕获一些辨别信息,这导致有限的改进。在本文中,我们采用多个视图来表示用于丰富特征信息的图像和文本。我们的框架在多个视图中利用互补信息来更好地学习鉴别性紧凑哈希码头。建议共同执行分类器学习和子空间学习的离散散列学习框架,同时完成多个搜索任务。我们的框架包括两个阶段,即核化过程和量化过程。内核旨在找到一个常见的子空间,其中可以融合多视图功能。量化阶段旨在学习鉴别的统一散列代码。在单标签数据集(Wiki和MMed)和多标签数据集(Mirflickr和Nus-宽)上进行了广泛的实验,实验结果表明了与最先进的方法相比的方法的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号