首页> 外文期刊>Pattern Analysis and Applications >Adaptive graph-regularized fixed rank representation for subspace segmentation
【24h】

Adaptive graph-regularized fixed rank representation for subspace segmentation

机译:子空间分割的自适应图正则化固定秩表示

获取原文
获取原文并翻译 | 示例

摘要

Low-rank representation (LRR) has shown its great power in subspace segmentation tasks. However, by using matrix factorization skill, fixed-rank representation dominates LRR in many subspace segmentation applications. In this paper, based on the depth analyses on fixed-rank representation (FRR), we propose a new graph-regularized FRR method which is termed adaptive graph-regularized fixed-rank representation (AGFRR). Different from the existing methods which use the original data set to build the graph regularizer for a reconstruction coefficient matrix, AGFRR uses one of the matrix factor of a reconstruction matrix to construct the graph regularizer for the reconstruction matrix itself. We claim that the constructed graph regularizer can discover the manifold structure of a given data set more faithfully. Hence, AGFRR is more suitable for revealing the nonlinear subspace structures of data sets than FRR. Moreover, an optimization algorithm for solving AGFRR problem is also provided. Finally, the subspace segmentation experiments on both synthetic and real-world data sets show that AGFRR is superior to the existing LRR and FRR-related algorithms.
机译:低秩表示(LRR)在子空间分割任务中已显示出强大的功能。但是,通过使用矩阵分解技术,在许多子空间分割应用中,固定秩表示在LRR中占主导地位。本文在对固定秩表示法(FRR)进行深度分析的基础上,提出了一种新的图正则化FRR方法,称为自适应图正则化固定秩表示法(AGFRR)。与使用原始数据集为重构系数矩阵构建图正则器的现有方法不同,AGFRR使用重构矩阵的矩阵因子之一为重构矩阵本身构建图正则器。我们声称构造的图正则化器可以更忠实地发现给定数据集的流形结构。因此,与FRR相比,AGFRR更适合于揭示数据集的非线性子空间结构。此外,还提供了解决AGFRR问题的优化算法。最后,在合成和真实数据集上进行的子空间分割实验表明,AGFRR优于现有的LRR和FRR相关算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号