首页> 外文期刊>Pattern Analysis and Applications >Evaluation of different chrominance models in the detection and reconstruction of faces and hands using the growing neural gas network
【24h】

Evaluation of different chrominance models in the detection and reconstruction of faces and hands using the growing neural gas network

机译:使用不断发展的神经气体网络评估不同色度模型在面部和手部检测和重建中的作用

获取原文
获取原文并翻译 | 示例

摘要

Physical traits such as the shape of the hand and face can be used for human recognition and identification in video surveillance systems and in biometric authentication smart card systems, as well as in personal health care. However, the accuracy of such systems suffers from illumination changes, unpredictability, and variability in appearance (e.g. occluded faces or hands, cluttered backgrounds, etc.). This work evaluates different statistical and chrominance models in different environments with increasingly cluttered backgrounds where changes in lighting are common and with no occlusions applied, in order to get a reliable neural network reconstruction of faces and hands, without taking into account the structural and temporal kinematics of the hands. First a statistical model is used for skin colour segmentation to roughly locate hands and faces. Then a neural network is used to reconstruct in 3D the hands and faces. For the filtering and the reconstruction we have used the growing neural gas algorithm which can preserve the topology of an object without restarting the learning process. Experiments conducted on our own database but also on four benchmark databases (Stirling's, Alicante, Essex, and Stegmann's) and on deaf individuals from normal 2D videos are freely available on the BSL signbank dataset. Results demonstrate the validity of our system to solve problems of face and hand segmentation and reconstruction under different environmental conditions.
机译:诸如手和脸的形状等身体特征可用于视频监控系统和生物识别智能卡系统以及个人医疗保健中的人类识别和识别。但是,这种系统的精度受到照明变化,不可预测性和外观变化性的影响(例如,面部或手被遮挡,背景杂乱等)。这项工作评估了在背景混乱的背景下的不同环境中的不同统计和色度模型,在这些环境中杂乱无章的光照很常见,并且没有应用遮挡,以便在不考虑结构和时间运动学的情况下获得可靠的面部和手部神经网络重构。的手。首先,使用统计模型对肤色进行细分,以大致定位手和脸。然后,使用神经网络以3D方式重建手和脸。对于滤波和重构,我们使用了增长的神经气体算法,该算法可以保留对象的拓扑结构而无需重新启动学习过程。在我们自己的数据库上以及在四个基准数据库(斯特林,阿利坎特,埃塞克斯和斯特格曼的数据库)以及正常2D视频中的聋人上进行的实验都可以在BSL Signbank数据集中免费获得。结果证明了我们的系统在解决不同环境条件下面部和手部分割和重建问题方面的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号