首页> 外文期刊>Pattern Analysis and Applications >Micro-expression recognition based on 3D flow convolutional neural network
【24h】

Micro-expression recognition based on 3D flow convolutional neural network

机译:基于3D流卷积神经网络的微表情识别

获取原文
获取原文并翻译 | 示例

摘要

Micro-expression recognition (MER) is a growing field of research which is currently in its early stage of development. Unlike conventional macro-expressions, micro-expressions occur at a very short duration and are elicited in a spontaneous manner from emotional stimuli. While existing methods for solving MER are largely non-deep-learning-based methods, deep convolutional neural network (CNN) has shown to work very well on such as face recognition, facial expression recognition, and action recognition. In this article, we propose applying the 3D flow-based CNNs model for video-based micro-expression recognition, which extracts deeply learned features that are able to characterize fine motion flow arising from minute facial movements. Results from comprehensive experiments on three benchmark datasets-SMIC, CASME/CASME II, showed a marked improvement over state-of-the-art methods, hence proving the effectiveness of our fairly easy CNN model as the deep learning benchmark for facial MER.
机译:微表达识别(MER)是一个正在发展的研究领域,目前正处于发展初期。与常规的宏观表达不同,微观表达在很短的时间内发生,并且是由情绪刺激以自发方式引起的。虽然解决MER的现有方法主要是基于非深度学习的方法,但深度卷积神经网络(CNN)已显示在面部识别,面部表情识别和动作识别等方面非常有效。在本文中,我们建议将基于3D流的CNN模型应用于基于视频的微表情识别,该模型提取了深度学习的特征,这些特征能够表征由微小的面部运动引起的精细运动。在三个基准数据集-SMIC,CASME / CASME II上进行的综合实验结果表明,与最新方法相比,该方法有了显着改进,因此证明了我们相当简单的CNN模型作为面部MER深度学习基准的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号