首页> 外文期刊>Pattern Analysis and Applications >Human action recognition in videos with articulated pose information by deep networks
【24h】

Human action recognition in videos with articulated pose information by deep networks

机译:深度网络在具有清晰姿势信息的视频中对人的动作进行识别

获取原文
获取原文并翻译 | 示例

摘要

Action recognition is of great importance in understanding human motion from video. It is an important topic in computer vision due to its many applications such as video surveillance, human-machine interaction and video retrieval. One key problem is to automatically recognize low-level actions and high-level activities of interest. This paper proposes a way to cope with low-level actions by combining information of human body joints to aid action recognition. This is achieved by using high-level features computed by a convolutional neural network which was pre-trained on Imagenet, with articulated body joints as low-level features. These features are then used to feed a Long Short-Term Memory network to learn the temporal dependencies of an action. For pose prediction, we focus on articulated relations between body joints. We employ a series of residual auto-encoders to produce multiple predictions which are then combined to provide a likelihood map of body joints. In the network topology, features are processed across all scales which capture the various spatial relationships associated with the body. Repeated bottom-up and top-down processing with intermediate supervision of each auto-encoder network is applied. We demonstrate state-of-the-art results on the popular FLIC, LSP and UCF Sports datasets.
机译:动作识别对于理解视频中的人类动作非常重要。由于它在视频监控,人机交互和视频检索等诸多应用中,因此成为计算机视觉中的重要主题。一个关键问题是自动识别感兴趣的低级动作和高级别活动。本文提出了一种通过结合人体关节信息来辅助动作识别的应对低级动作的方法。这是通过使用由卷积神经网络计算出的高级特征来实现的,该卷积神经网络已在Imagenet上进行了预训练,将关节关节作为低级特征。然后使用这些功能为长期短期记忆网络提供信息,以了解动作的时间依赖性。对于姿势预测,我们专注于身体关节之间的关节关系。我们采用一系列残差自动编码器来产生多个预测,然后将其组合以提供人体关节的似然图。在网络拓扑中,将对所有尺度的特征进行处理,以捕获与人体相关的各种空间关系。在每个自动编码器网络的中间监督下,重复进行自下而上和自上而下的处理。我们在流行的FLIC,LSP和UCF Sports数据集上展示了最新的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号