首页> 外文期刊>Image and Vision Computing >Sparse composition of body poses and atomic actions for human activity recognition in RGB-D videos
【24h】

Sparse composition of body poses and atomic actions for human activity recognition in RGB-D videos

机译:RGB-D视频中人体姿势识别和原子动作的稀疏构成

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an approach to recognize human activities using body poses estimated from RGB-D data. We focus on recognizing complex activities composed of sequential or simultaneous atomic actions characterized by body motions of a single actor. We tackle this problem by introducing a hierarchical compositional model that operates at three levels of abstraction. At the lowest level, geometric and motion descriptors are used to learn a dictionary of body poses. At the intermediate level, sparse compositions of these body poses are used to obtain meaningful representations for atomic human actions. Finally, at the highest level, spatial and temporal compositions of these atomic actions are used to represent complex human activities.
机译:本文提出了一种使用从RGB-D数据估计的人体姿势识别人类活动的方法。我们专注于识别由单个演员的身体动作为特征的顺序或同时发生的原子动作组成的复杂活动。我们通过引入在三个抽象级别上运行的分层组成模型来解决此问题。在最低级别上,使用几何和运动描述符来学习身体姿势字典。在中级水平上,这些人体姿势的稀疏构成可用于获得对人类原子动作的有意义的表示。最后,在最高层次上,这些原子动作的时空成分被用来代表复杂的人类活动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号