首页> 外文期刊>Pattern Analysis and Applications >Effectiveness of error correcting output coding methods in ensemble and monolithic learning machines
【24h】

Effectiveness of error correcting output coding methods in ensemble and monolithic learning machines

机译:整体学习机中纠错输出编码方法的有效性

获取原文
获取原文并翻译 | 示例

摘要

Error Correcting Output Coding (ECOC) methods for multiclass classification present several open problems ranging from the trade-off between their error recovering capabilities and the learnability of the induced dichotomies to the selection of proper base learners and to the design of well-separated codes for a given multiclass problem. We experimentally analyse some of the main factors affecting the effectiveness of ECOC methods. We show that the architecture of ECOC learning machines influences the accuracy of the ECOC classifier, highlighting that ensembles of parallel and independent dichotomic Multi-Layer Perceptrons are well-suited to implement ECOC methods. We quantitatively evaluate the dependence among codeword bit errors using mutual information based measures, experimentally showing that a low dependence enhances the generalisation capabilities of ECOC. Moreover we show that the proper selection of the base learner and the decoding function of the reconstruction stage significantly affects the performance of the ECOC ensemble. The analysis of the relationships between the error recovering power, the accuracy of the base learners, and the dependence among codeword bits show that all these factors concur to the effectiveness of ECOC methods in a not straightforward way, very likely dependent on the distribution and complexity of the data.
机译:用于多类分类的纠错输出编码(ECOC)方法提出了几个未解决的问题,范围从它们的错误恢复能力与诱导二分法的可学习性之间的权衡,到适当的基础学习器的选择以及用于分离的良好代码的设计给定的多类问题。我们通过实验分析了影响ECOC方法有效性的一些主要因素。我们展示了ECOC学习机的体系结构会影响ECOC分类器的准确性,突出表明并行和独立的二分类多层感知器的集合非常适合于实现ECOC方法。我们使用基于互信息的度量来定量评估码字误码之间的依赖性,通过实验表明低依赖性增强了ECOC的泛化能力。此外,我们表明,基础学习者的正确选择和重建阶段的解码功能会显着影响ECOC集成的性能。对错误恢复能力,基础学习者的准确性以及码字位之间的依赖关系之间的关系进行分析,结果表明,所有这些因素均以一种不直接的方式同意ECOC方法的有效性,这很可能取决于分布和复杂性的数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号