首页> 外文期刊>Pattern Analysis and Applications >An analysis of how training data complexity affects the nearest neighbor classifiers
【24h】

An analysis of how training data complexity affects the nearest neighbor classifiers

机译:训练数据复杂度如何影响最近邻分类器的分析

获取原文
获取原文并翻译 | 示例

摘要

The κ-nearest neighbors (κ-NN) classifier is one of the most popular supervised classification methods. It is very simple, intuitive and accurate in a great variety of real-world domains. Nonetheless, despite its simplicity and effectiveness, practical use of this rule has been historically limited due to its high storage requirements and the computational costs involved. On the other hand, the performance of this classifier appears strongly sensitive to training data complexity. In this context, by means of several problem difficulty measures, we try to characterize the behavior of the κ-NN rule when working under certain situations. More specifically, the present analysis focuses on the use of some data complexity measures to describe class overlapping, feature space dimensionality and class density, and discover their relation with the practical accuracy of this classifier.
机译:κ最近邻居(κ-NN)分类器是最受欢迎的监督分类方法之一。在各种各样的现实世界中,它非常简单,直观和准确。尽管如此,尽管其简单有效,但是由于其高存储要求和所涉及的计算成本,该规则的实际使用一直受到历史限制。另一方面,该分类器的性能似乎对训练数据的复杂性非常敏感。在这种情况下,我们通过几种问题难易程度的方法,试图描述在某些情况下工作时κ-NN规则的行为。更具体地说,本分析着重于使用一些数据复杂性度量来描述类重叠,特征空间维数和类密度,并发现它们与该分类器的实际准确性之间的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号