首页> 外文期刊>Pattern Analysis and Applications >A comparative study on feature extraction for fingerprint classification and performance improvements using rank-level fusion
【24h】

A comparative study on feature extraction for fingerprint classification and performance improvements using rank-level fusion

机译:基于等级融合的特征提取用于指纹分类和性能提升的比较研究

获取原文
获取原文并翻译 | 示例

摘要

Fingerprint classification represents an important preprocessing step in fingerprint identification, which can be very helpful in reducing the cost of searching large fingerprint databases. Over the past years, several different approaches have been proposed for extracting distinguishable features and improving classification performance. In this paper, we present a comparative study involving four different feature extraction methods for fingerprint classification and propose a rank-based fusion scheme for improving classification performance. Specifically, we have compared two well-known feature extraction methods based on orientation maps (OMs) and Gabor filters with two new methods based on "minutiae maps" and "orientation collinearity". Each feature extraction method was compared with each other using the NIST-4 database in terms of accuracy and time. Moreover, we have investigated the issue of improving classification performance using rank-level fusion. When evaluating each feature extraction method individually, OMs performed the best. Gabor features fell behind OMs mainly because their computation is sensitive to errors in localizing the registration point. When fusing the rankings of different classifiers, we found that combinations involving OMs improve performance, demonstrating the importance of orientation information for classification purposes. Overall,rnthe best classification results were obtained by fusing orientation map with orientation collinearity classifiers.
机译:指纹分类是指纹识别中重要的预处理步骤,这对于减少搜索大型指纹数据库的成本非常有帮助。在过去的几年中,已经提出了几种不同的方法来提取可区别的特征并改善分类性能。在本文中,我们提出了一项比较研究,涉及四种不同的特征提取方法用于指纹分类,并提出了一种基于等级的融合方案以提高分类性能。具体来说,我们将两种基于方向图(OM)和Gabor滤波器的著名特征提取方法与两种基于“细节图”和“方向共线性”的新方法进行了比较。使用NIST-4数据库对每种特征提取方法进行了准确性和时间方面的比较。此外,我们研究了使用等级级融合提高分类性能的问题。分别评估每种特征提取方法时,OM表现最佳。 Gabor功能落后于OM,主要是因为它们的计算对定位注册点时的错误敏感。当融合不同分类器的排名时,我们发现涉及OM的组合可提高性能,这说明了定向信息对于分类目的的重要性。总体而言,将方向图与方向共线性分类器融合可以得到最好的分类结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号