首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Efficient Multiple Feature Fusion With Hashing for Hyperspectral Imagery Classification: A Comparative Study
【24h】

Efficient Multiple Feature Fusion With Hashing for Hyperspectral Imagery Classification: A Comparative Study

机译:带有散列的高效多特征融合用于高光谱图像分类的比较研究

获取原文
获取原文并翻译 | 示例

摘要

Due to the complementary properties of different features, multiple feature fusion has a large potential for hyperspectral imagery classification. At the meantime, hashing is promising in representing a high-dimensional float-type feature with extremely low bit binary codes while maintaining the performance. In this paper, we study the possibility of using hashing to fuse multiple features for hyperspectral imagery classification. For this purpose, we propose a multiple feature fusion framework to evaluate the performance of using different hashing methods. For comparison and completeness, we also have an extensive comparison to five subspace-based dimension reduction methods and six fusion-based methods which are popular solutions to deal with multiple features in hyperspectral image classification. Experimental results on four benchmark hyperspectral data sets demonstrate that using hashing to fuse multiple features can achieve comparable or better performance with the traditional subspace-based dimension reduction methods and fusion-based methods. Moreover, the binary features obtained by using hashing need much less storage and are faster to compute distances with the help of machine instructions.
机译:由于不同特征的互补性质,多特征融合具有高光谱图像分类的巨大潜力。同时,在保持性能的同时,以具有极低位二进制代码的高维浮点型特征表示哈希是很有希望的。在本文中,我们研究了使用散列来融合多个特征以进行高光谱图像分类的可能性。为此,我们提出了一种多特征融合框架,以评估使用不同哈希方法的性能。为了比较和完整起见,我们还对五种基于子空间的降维方法和六种基于融合的方法进行了广泛的比较,它们是处理高光谱图像分类中多种特征的流行解决方案。在四个基准高光谱数据集上的实验结果表明,使用散列融合多个特征可以与传统的基于子空间的降维方法和基于融合的方法取得可比或更好的性能。此外,通过使用散列获得的二进制特征所需的存储空间要少得多,并且借助机器指令可以更快地计算距离。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号