首页> 外文期刊>Pattern Analysis and Applications >Entropy and similarity measure of Atanassov's intuitionistic fuzzy sets and their application to pattern recognition based on fuzzy measures
【24h】

Entropy and similarity measure of Atanassov's intuitionistic fuzzy sets and their application to pattern recognition based on fuzzy measures

机译:Atanassov直觉模糊集的熵和相似性度量及其在基于模糊度量的模式识别中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this study, we first examine entropy and similarity measure of Atanassov's intuitionistic fuzzy sets, and define a new entropy. Meanwhile, a construction approach to get the similarity measure of Atanassov's intuitionistic fuzzy sets is introduced, which is based on entropy. Since the independence of elements in a set is usually violated, it is not suitable to aggregate the values for patterns by additive measures. Based on the given entropy and similarity measure, we study their application to Atanassov's intuitionistic fuzzy pattern recognition problems under fuzzy measures, where the interactions between features are considered. To overall reflect the interactive characteristics between them, we define three Shapley-weighted similarity measures. Furthermore, if the information about the weights of features is incompletely known, models for the optimal fuzzy measure on feature set are established. Moreover, an approach to pattern recognition under Atanassov's intuitionistic fuzzy environment is developed.
机译:在这项研究中,我们首先检查Atanassov直觉模糊集的熵和相似性度量,并定义一个新的熵。同时,介绍了一种基于熵的Atanassov直觉模糊集相似性度量的构造方法。由于通常会破坏集合中元素的独立性,因此不适合通过附加度量来汇总模式的值。基于给定的熵和相似度度量,我们研究了它们在考虑了特征之间相互作用的模糊度量下对Atanassov的直觉模糊模式识别问题的应用。为了总体上反映它们之间的交互特性,我们定义了三个Shapley加权相似度度量。此外,如果不完全了解有关特征权重的信息,则建立针对特征集的最佳模糊测度的模型。此外,开发了一种在Atanassov直觉模糊环境下进行模式识别的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号