首页> 外文期刊>Pattern Analysis and Applications >A stochastic framework for K-SVD with applications on face recognition
【24h】

A stochastic framework for K-SVD with applications on face recognition

机译:用于人脸识别的K-SVD随机框架

获取原文
获取原文并翻译 | 示例

摘要

In recent years, the sparse representation modeling of signals has received a lot of attention due to its state-of-the-art performance in different computer vision tasks. One important factor to its success is the ability to promote representations that are well adapted to the data. This is achieved by the use of dictionary learning algorithms. The most well known of these algorithms is K-SVD. In this paper, we propose a stochastic framework for K-SVD called alpha K-SVD. The alpha K-SVD uses a parameter to control a compromise between exploring the space of dictionaries and improving a possible solution. The use of this heuristic search strategy was motivated by the fact that K-SVD uses a greedy search algorithm with fast convergence, possibly leading to local minimum. Our approach is evaluated on two public face recognition databases. The results show that our approach yields better results than K-SVD and LC-KSVD (a K-SVD adaptation to classification) when the sparsity level is low.
机译:近年来,信号的稀疏表示模型由于其在不同计算机视觉任务中的最新性能而受到广泛关注。其成功的重要因素之一是能够促进非常适合数据的表示形式。这是通过使用字典学习算法来实现的。这些算法中最著名的是K-SVD。在本文中,我们提出了一种称为αK-SVD的K-SVD随机框架。 alpha K-SVD使用参数来控制在探索字典空间和改进可能的解决方案之间的折衷。 K-SVD使用具有快速收敛性的贪婪搜索算法(可能导致局部极小值)的事实激发了这种启发式搜索策略的使​​用。我们的方法在两个公众面部识别数据库上进行了评估。结果表明,当稀疏度较低时,我们的方法比K-SVD和LC-KSVD(对分类的K-SVD适应)产生更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号