首页> 外文期刊>Journal of visual communication & image representation >A novel multi-view dimensionality reduction and recognition framework with applications to face recognition
【24h】

A novel multi-view dimensionality reduction and recognition framework with applications to face recognition

机译:一种新颖的多视角降维和识别框架及其在人脸识别中的应用

获取原文
获取原文并翻译 | 示例

摘要

Multi-view data with each view corresponding to a type of feature generally provides more comprehensive information. Learning from multi-view data is a challenging research topic in pattern recognition. For recognition task, most multi-view learning methods separately learn multi-view dimensionality reduction (MvDR) and classification models. Thus, the connection between the two models has not been well studied. In this paper, we propose a novel multi-view dimensionality reduction and recognition framework, which can establish the connection between MvDR and classification. Specifically, a multi-view dimensionality reduction method, termed as sparse representation regularized multiset canonical correlation analysis ((SRMCC)-M-2) is first proposed. (SRMCC)-M-2 considers both correlation and sparse discrimination among multiple views. In accord with (SRMCC)-M-2, a classifier, called multi-view sparse representation based classifier (MvSRC) is further developed. MvSRC performs classification by comparing the reconstruction residuals of different classes among all views. An efficient iterative algorithm is proposed to solve the proposed model. Extensive experiments on the AR, CMU PIE, FERET, and FRGC datasets demonstrate that the proposed framework can achieve superior recognition performance than several state-of-the-art methods.
机译:每个视图对应于一种类型的要素的多视图数据通常会提供更全面的信息。从多视图数据中学习是模式识别中具有挑战性的研究主题。对于识别任务,大多数多视图学习方法分别学习多视图降维(MvDR)和分类模型。因此,尚未很好地研究这两种模型之间的联系。在本文中,我们提出了一种新颖的多视图降维和识别框架,该框架可以建立MvDR与分类之间的联系。具体来说,首先提出了一种多视图降维方法,称为稀疏表示正则化多集规范相关分析((SRMCC)-M-2)。 (SRMCC)-M-2同时考虑了多个视图之间的相关性和稀疏性。根据(SRMCC)-M-2,进一步开发了一种分类器,称为基于多视图稀疏表示的分类器(MvSRC)。 MvSRC通过比较所有视图之间不同类别的重构残差来执行分类。提出了一种有效的迭代算法来求解该模型。在AR,CMU PIE,FERET和FRGC数据集上进行的大量实验表明,与几种最新方法相比,该框架可实现更高的识别性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号