首页> 外文期刊>Pattern Analysis and Applications >Tied factors analysis for high-dimensional image feature extraction and recognition application
【24h】

Tied factors analysis for high-dimensional image feature extraction and recognition application

机译:关联因素分析在高维图像特征提取与识别中的应用

获取原文
获取原文并翻译 | 示例

摘要

Feature extraction from images, which are typical of high dimensionality, is crucial to the recognition performance. To explore the discriminative information while depressing the intra-class variations due to variable illumination and view conditions, we propose a factor analysis framework for separate "content" from "style," identifying a familiar face seen under unfamiliar viewing conditions, classifying familiar poses presented in an unfamiliar face, estimating age across unfamiliar faces. The framework applies efficient algorithms derived from objective factor separating functions and space mapping functions, which can produce sufficiently expressive representations of feature extraction and dimensionality reduction. We report promising results on three different tasks in the high-dimensional image perceptual domains: face identification with two benchmark face databases, facial pose classification with a benchmark facial pose database, extrapolation of age to unseen facial image. Experimental results show that our approach produced higher classification performance when compared to classical LDA, WLDA, LPP, MFA, and DLA algorithms.
机译:从图像中提取具有高维特征的特征对于识别性能至关重要。为了探索区分性信息,同时抑制由于可变照明和视图条件而引起的类内差异,我们提出了一个因子分析框架,用于将“内容”与“样式”分开,以识别在不熟悉的视图条件下看到的熟悉的面孔,并对呈现的熟悉姿势进行分类在不熟悉的面孔中估算出不熟悉面孔的年龄。该框架应用了从客观因子分离函数和空间映射函数派生的高效算法,这些算法可以生成特征提取和降维的足够有表现力的表示形式。我们报告了在高维图像感知领域中三个不同任务的有希望的结果:使用两个基准面部数据库进行面部识别,使用基准面部姿势数据库进行面部姿势分类,将年龄推算到看不见的面部图像。实验结果表明,与经典的LDA,WLDA,LPP,MFA和DLA算法相比,我们的方法具有更高的分类性能。

著录项

  • 来源
    《Pattern Analysis and Applications》 |2017年第2期|587-600|共14页
  • 作者单位

    HuBei Univ Sci & Technol, Sch Comp Sci & Technol, Xianning, Hubei Province, Peoples R China|Guangdong Micropattern Software Co Ltd, Guangzhou, Guangdong, Peoples R China;

    Guangdong Micropattern Software Co Ltd, Guangzhou, Guangdong, Peoples R China;

    HuBei Univ Sci & Technol, Sch Comp Sci & Technol, Xianning, Hubei Province, Peoples R China;

    HuBei Univ Sci & Technol, Sch Biomed Engn, Xianning, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Dimensionality reduction; Feature extractor; Subspace learning; Factors analysis;

    机译:降维;特征提取器;子空间学习;因子分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号