首页> 外文期刊>Pattern Analysis and Applications >Estimating number of components in Gaussian mixture model using combination of greedy and merging algorithm
【24h】

Estimating number of components in Gaussian mixture model using combination of greedy and merging algorithm

机译:结合贪婪算法和融合算法估计高斯混合模型中的分量数

获取原文
获取原文并翻译 | 示例

摘要

AbstractThe brain must deal with a massive flow of sensory information without receiving any prior information. Therefore, when creating cognitive models, it is important to acquire as much information as possible from the data itself. Moreover, the brain has to deal with an unknown number of components (concepts) contained in a dataset without any prior knowledge. Most of the algorithms in use today are not able to effectively copy this strategy. We propose a novel approach based on neural modelling fields theory (NMF) to overcome this problem. The algorithm combines NMF and greedy Gaussian mixture models. The novelty lies in the combination of information criterion with the merging algorithm. The performance of the algorithm was compared with other well-known algorithms and tested both on artificial and real-world datasets.
机译: Abstract 大脑必须处理大量的感官信息,而不能接收任何先验信息。因此,在创建认知模型时,从数据本身获取尽可能多的信息非常重要。此外,大脑必须在没有任何先验知识的情况下处理数据集中包含的未知数量的组件(概念)。当今使用的大多数算法都无法有效地复制该策略。我们提出了一种基于神经建模领域理论(NMF)的新颖方法来克服此问题。该算法结合了NMF和贪婪的高斯混合模型。新颖之处在于信息准则与合并算法的结合。将该算法的性能与其他知名算法进行了比较,并在人工和现实数据集上进行了测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号