首页> 外文期刊>Applied Intelligence >A novel split-and-merge algorithm for hierarchical clustering of Gaussian mixture models
【24h】

A novel split-and-merge algorithm for hierarchical clustering of Gaussian mixture models

机译:高斯混合模型分层聚类的一种新的拆分合并算法

获取原文
获取原文并翻译 | 示例

摘要

The paper presents a novel split-and-merge algorithm for hierarchical clustering of Gaussian mixture models, which tends to improve on the local optimal solution determined by the initial constellation. It is initialized by local optimal parameters obtained by using a baseline approach similar to k-means, and it tends to approach more closely to the global optimum of the target clustering function, by iteratively splitting and merging the clusters of Gaussian components obtained as the output of the baseline algorithm. The algorithm is further improved by introducing model selection in order to obtain the best possible trade-off between recognition accuracy and computational load in a Gaussian selection task applied within an actual recognition system. The proposed method is tested both on artificial data and in the framework of Gaussian selection performed within a real continuous speech recognition system, and in both cases an improvement over the baseline method has been observed.
机译:提出了一种新颖的高斯混合模型分层聚类的拆分合并算法,该算法倾向于对由初始星座图确定的局部最优解进行改进。它是通过使用类似于k均值的基线方法获得的局部最优参数进行初始化的,并且通过迭代拆分和合并作为输出获得的高斯分量的簇,它倾向于更接近于目标聚类函数的全局最优值。基线算法。通过引入模型选择来进一步改进算法,以便在实际识别系统中应用的高斯选择任务中获得识别精度和计算负荷之间的最佳平衡。在人工数据和真实连续语音识别系统中执行的高斯选择框架下,对所提出的方法进行了测试,并且在两种情况下都可以观察到对基线方法的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号