首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Predicting Machine Learning Pipeline Runtimes in the Context of Automated Machine Learning
【24h】

Predicting Machine Learning Pipeline Runtimes in the Context of Automated Machine Learning

机译:预测机器在自动化机器学习背景下学习管道运行时间

获取原文
获取原文并翻译 | 示例

摘要

Automated machine learning (AutoML) seeks to automatically find so-called machine learning pipelines that maximize the prediction performance when being used to train a model on a given dataset. One of the main and yet open challenges in AutoMLis an effective use of computational resources: An AutoML process involves the evaluation of many candidate pipelines, which are costly but often ineffective because they are canceled due to a timeout. In this paper, we present an approach to predict the runtime of two-step machine learning pipelines with up to one pre-processor, which can be used to anticipate whether or not a pipeline will time out. Separate runtime models are trained offline for each algorithm that may be used in a pipeline, and an overall prediction is derived from these models. We empirically show that the approach increases successful evaluations made by an AutoML tool while preserving or even improving on the previously best solutions.
机译:自动化机器学习(Automl)旨在自动查找所谓的机器学习管道,可在用于在给定数据集上培训模型时最大化预测性能。 Automlis中的主要和最开放的挑战之一是有效使用计算资源:自动实施过程涉及评估许多候选流水线,这是昂贵的,而且往往无效,因为它们由于超时而被取消。 在本文中,我们提出了一种方法来预测两步机器学习管道的运行时间,最多可用于预处理,这可以用于预测管道是否会超时。 单独的运行时模型对于可以在管道中使用的每种算法训练脱机,并且总体预测来自这些模型。 我们经验证明,该方法增加了自动型工具的成功评估,同时保留甚至改善先前最佳解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号