首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Deep Non-Negative Matrix Factorization Architecture Based on Underlying Basis Images Learning
【24h】

Deep Non-Negative Matrix Factorization Architecture Based on Underlying Basis Images Learning

机译:基于基础图像学习的深度非负矩阵分解架构

获取原文
获取原文并翻译 | 示例

摘要

The non-negative matrix factorization (NMF) algorithm represents the original image as a linear combination of a set of basis images. This image representation method is in line with the idea of "parts constitute a whole" in human thinking. The existing deep NMF performs deep factorization on the coefficient matrix. In these methods, the basis images used to represent the original image is essentially obtained by factorizing the original images once. To extract features reflecting the deep localization characteristics of images, a novel deep NMF architecture based on underlying basis images learning is proposed for the first time. The architecture learns the underlying basis images by deep factorization on the basis images matrix. The deep factorization architecture proposed in this paper has strong interpretability. To implement this architecture, this paper proposes a deep non-negative basis matrix factorization algorithm to obtain the underlying basis images. Then, the objective function is established with an added regularization term, which directly constrains the basis images matrix to obtain the basis images with good local characteristics, and a regularized deep non-negative basis matrix factorization algorithm is proposed. The regularized deep nonlinear non-negative basis matrix factorization algorithm is also proposed to handle pattern recognition tasks with complex data. This paper also theoretically proves the convergence of the algorithm. Finally, the experimental results show that the deep NMF architecture based on the underlying basis images learning proposed in this paper can obtain better recognition performance than the other state-of-the-art methods.
机译:非负矩阵分解(NMF)算法表示原始图像作为一组基图像的线性组合。此图像表示方法符合人类思维中“部分构成整体”的思想。现有的深NMF对系数矩阵进行深度分解。在这些方法中,用于表示原始图像的基础映像基本上通过解码一次原始图像来获得。为了提取反映图像的深度定位特性的特征,第一次提出了一种基于基础图像学习的新型NMF架构。该架构通过对基础图像矩阵的深度分解来学习底层基础图像。本文提出的深度分解架构具有很强的可解释性。为了实现这种架构,本文提出了一种深度非负基矩阵分解算法来获得基础图像。然后,利用添加的正则化术语建立目标函数,该正则化术语直接约束基础图像矩阵以获得具有良好局部特性的基础图像,并且提出了正则化的深度非负基矩阵分解算法。还提出了正则化的深度非线性非负基础矩阵分解算法以处理具有复杂数据的模式识别任务。本文理论上还证明了算法的收敛性。最后,实验结果表明,基于本文提出的基于底层基础图像学习的深NMF架构可以获得比其他最先进的方法更好的识别性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号