首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Exploring Discriminative Word-Level Domain Contexts for Multi-Domain Neural Machine Translation
【24h】

Exploring Discriminative Word-Level Domain Contexts for Multi-Domain Neural Machine Translation

机译:探索多域神经电脑翻译的判别词语级域上下文

获取原文
获取原文并翻译 | 示例

摘要

Owing to its practical significance, multi-domain Neural Machine Translation (NMT) has attracted much attention recently. Recent studies mainly focus on constructing a unified NMT model with mixed-domain training corpora to switch translation between different domains. In these models, the words in the same sentence are not well distinguished, while intuitively, they are related to the sentence domain to varying degrees and thus should exert different effects on the multi-domain NMT model. In this article, we are committed to distinguishing and exploiting different word-level domain contexts for multi-domain NMT. For this purpose, we adopt multi-task learning to jointly model NMT and monolingual attention-based domain classification tasks, improving the NMT model in two ways: 1) One domain classifier and one adversarial domain classifier are introduced to conduct domain classifications of input sentences. During this process, two generated gating vectors are used to produce domain-specific and domain-shared annotations for decoder; 2) We equip decoder with an attentional domain classifier. Then, the derived attentional weights are utilized to refine the model training via word-level cost weighting, so that the impacts of target words can be discriminated by their relevance to sentence domain. Experimental results on several multi-domain translations demonstrate the effectiveness of our model.
机译:由于其实际意义,多域神经机翻译(NMT)最近引起了很多关注。最近的研究主要集中在构建统一的NMT模型与混合域培训语料库,在不同域之间切换翻译。在这些模型中,同一句子中的单词不足区分,同时直观地,它们与句子域相关到不同程度,因此应该对多域NMT模型产生不同的影响。在本文中,我们致力于区分和利用用于多域NMT的不同的单级域上下文。为此目的,我们采用多任务学习来共同模拟NMT和单声道的关注域分类任务,以两种方式改进NMT模型:1)引入一个域分类器和一个对抗域分类器来进行输入句子的域分类。在此过程中,两个生成的选通矢量用​​于产生解码器的域特定的和域共享注释; 2)使用注意力域分类器装备解码器。然后,利用来自词级成本加权来优化模型训练的推导性注意力,从而可以通过与句子域的相关性来区分目标词的影响。几种多领域翻译的实验结果证明了我们模型的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号