首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Inferring Latent Domains for Unsupervised Deep Domain Adaptation
【24h】

Inferring Latent Domains for Unsupervised Deep Domain Adaptation

机译:推断无监督深域适应的潜在域

获取原文
获取原文并翻译 | 示例

摘要

Unsupervised Domain Adaptation (UDA) refers to the problem of learning a model in a target domain where labeled data are not available by leveraging information from annotated data in a source domain. Most deep UDA approaches operate in a single-source, single-target scenario, i.e., they assume that the source and the target samples arise from a single distribution. However, in practice most datasets can be regarded as mixtures of multiple domains. In these cases, exploiting traditional single-source, single-target methods for learning classification models may lead to poor results. Furthermore, it is often difficult to provide the domain labels for all data points, i.e. latent domains should be automatically discovered. This paper introduces a novel deep architecture which addresses the problem of UDA by automatically discovering latent domains in visual datasets and exploiting this information to learn robust target classifiers. Specifically, our architecture is based on two main components, i.e. a side branch that automatically computes the assignment of each sample to its latent domain and novel layers that exploit domain membership information to appropriately align the distribution of the CNN internal feature representations to a reference distribution. We evaluate our approach on publicly available benchmarks, showing that it outperforms state-of-the-art domain adaptation methods.
机译:无监督的域适应(UDA)是指在目标域中学习模型的问题,其中通过利用来自源域中的注释数据的信息来利用来自注释数据的标记数据。大多数深度UDA方法在单一来源,单个目标场景中操作,即,它们假设源和目标样本从单一分布产生。但是,在实际上,大多数数据集可以被视为多个域的混合。在这些情况下,利用传统的单源,用于学习分类模型的单目标方法可能会导致结果不佳。此外,通常难以为所有数据点提供域标签,即应该自动发现潜在域。本文介绍了一种新的深度建筑,通过在视觉数据集中自动发现潜在域并利用这些信息来了解UDA的问题,以便学习强大的目标分类器。具体而言,我们的体系结构基于两个主要组件,即,侧分支,它自动计算每个样本的分配给其潜在域和新颖的层,该域和新颖的层利用域成员资格信息将CNN内部特征表示的分布适当地将CNN内部特征表示的分布对准引用分布。我们在公开的基准上评估了我们的方法,表明它优于最先进的域适应方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号