首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Weakly Supervised Learning with Multi-Stream CNN-LSTM-HMMs to Discover Sequential Parallelism in Sign Language Videos
【24h】

Weakly Supervised Learning with Multi-Stream CNN-LSTM-HMMs to Discover Sequential Parallelism in Sign Language Videos

机译:用多流CNN-LSTM-HMMS弱化学习,以发现手语视频中的顺序并行性

获取原文
获取原文并翻译 | 示例

摘要

In this work we present a new approach to the field of weakly supervised learning in the video domain. Our method is relevant to sequence learning problems which can be split up into sub-problems that occur in parallel. Here, we experiment with sign language data. The approach exploits sequence constraints within each independent stream and combines them by explicitly imposing synchronisation points to make use of parallelism that all sub-problems share. We do this with multi-stream HMMs while adding intermediate synchronisation constraints among the streams. We embed powerful CNN-LSTM models in each HMM stream following the hybrid approach. This allows the discovery of attributes which on their own lack sufficient discriminative power to be identified. We apply the approach to the domain of sign language recognition exploiting the sequential parallelism to learn sign language, mouth shape and hand shape classifiers. We evaluate the classifiers on three publicly available benchmark data sets featuring challenging real-life sign language with over 1,000 classes, full sentence based lip-reading and articulated hand shape recognition on a fine-grained hand shape taxonomy featuring over 60 different hand shapes. We clearly outperform the state-of-the-art on all data sets and observe significantly faster convergence using the parallel alignment approach.
机译:在这项工作中,我们向视频领域弱监督学习领域提出了一种新方法。我们的方法与序列学习问题相关,这些问题可以分成并行发生的子问题。在这里,我们试验手语数据。该方法利用每个独立流内的序列约束,并通过显式施加同步点来利用所有子问题共享的并行性。我们使用多流HMMS执行此操作,同时在流之间添加中间同步约束。在混合方法后,我们将强大的CNN-LSTM模型嵌入每个HMM流中。这允许发现自己缺乏足够的辨别力的属性。我们将方法应用于手语识别领域,利用顺序并行性以学习手语,嘴形和手形分类器。我们在三个公开的基准数据集中评估分类器,该数据集具有超过1,000多个课程,全句的唇读和铰接手形状识别在一个超过60种不同的手形状。我们在所有数据集中显然优于最先进的,并使用并行对准方法观察更快的收敛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号