首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >ROAM: A Rich Object Appearance Model with Application to Rotoscoping
【24h】

ROAM: A Rich Object Appearance Model with Application to Rotoscoping

机译:漫游:一种丰富的物体外观模型,适用于旋转

获取原文
获取原文并翻译 | 示例

摘要

Rotoscoping, the detailed delineation of scene elements through a video shot, is a painstaking task of tremendous importance in professional post-production pipelines. While pixel-wise segmentation techniques can help for this task, professional rotoscoping tools rely on parametric curves that offer the artists a much better interactive control on the definition, editing and manipulation of the segments of interest. Sticking to this prevalent rotoscoping paradigm, we propose a novel framework to capture and track the visual aspect of an arbitrary object in a scene, given an initial closed outline of this object. This model combines a collection of local foreground/background appearance models spread along the outline, a global appearance model of the enclosed object and a set of distinctive foreground landmarks. The structure of this rich appearance model allows simple initialization, efficient iterative optimization with exact minimization at each step, and on-line adaptation in videos. We further extend this model by so-called trimaps which serve as an input to alpha-matting algorithms to allow truly seamless compositing. To this end, we leverage local classifiers attached to the roto-curves to define a confidence measure that is well-suited to define trimaps with adaptive band-widths. The resulting trimaps are parametric, temporally consistent and remain fully editable by the artist. We demonstrate qualitatively and quantitatively the merit of this framework through comparisons with tools based on either dynamic segmentation with a closed curve or pixel-wise binary labelling.
机译:旋转,通过视频拍摄的场景元素详细描绘,是在专业生产管道中巨大重要的艰苦任务。虽然像素 - 明智的分割技术可以帮助实现这项任务,但专业的旋转工具依赖于参数曲线来提供艺术家对景点的定义,编辑和操纵的更好的互动控制。考虑到该对象的初始封闭轮廓,粘贴到这种普遍的旋转范例,提出了一种捕获和跟踪场景中任意对象的视觉方面的新颖框架。该模型结合了沿轮廓传播的本地前景/背景外观模型的集合,封闭对象的全球外观模型和一组独特的前景地标。这种丰富的外观模型的结构允许简单的初始化,高效迭代优化,在每个步骤中具有精确的最小化,以及视频在线调整。我们通过所谓的TRIMAPS进一步扩展了该模型,该TRIMAPS用作α光伏算法的输入,以允许真正无缝合成。为此,我们利用附着在旋转曲线上的本地分类器来定义符合适合定义具有自适应带宽的微调的置信度量。由此产生的Trimaps是参数,在时间上一致的,并且仍然是艺术家完全可编辑的。我们通过基于具有闭合曲线或像素 - 明智的二进制标记的动态分割的工具的比较来定制和定量地展示该框架的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号