首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Generalized Feedback Loop for Joint Hand-Object Pose Estimation
【24h】

Generalized Feedback Loop for Joint Hand-Object Pose Estimation

机译:联合手对象姿态估计的广义反馈回路

获取原文
获取原文并翻译 | 示例

摘要

We propose an approach to estimating the 3D pose of a hand, possibly handling an object, given a depth image. We show that we can correct the mistakes made by a Convolutional Neural Network trained to predict an estimate of the 3D pose by using a feedback loop. The components of this feedback loop are also Deep Networks, optimized using training data. This approach can be generalized to a hand interacting with an object. Therefore, we jointly estimate the 3D pose of the hand and the 3D pose of the object. Our approach performs en-par with state-of-the-art methods for 3D hand pose estimation, and outperforms state-of-the-art methods for joint hand-object pose estimation when using depth images only. Also, our approach is efficient as our implementation runs in real-time on a single GPU.
机译:我们提出了一种估计手的3D姿势的方法,可以给定深度图像处理对象。我们表明我们可以通过使用反馈循环来纠正训练训练训练的卷积神经网络所产生的错误来预测3D姿势的估计。该反馈回路的组件也是深网络,使用培训数据进行优化。这种方法可以概括为与对象相互作用的手。因此,我们共同估计了手的3D姿势和对象的3D姿势。我们的方法对3D手姿势估计的最先进方法进行了Z-PAR,并且在使用深度图像时,概率最先进的方法用于联合手对象姿势估计。此外,我们的方法是有效的,因为我们的实现在单个GPU上实时运行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号