首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Unsupervised texture segmentation using Markov random field models
【24h】

Unsupervised texture segmentation using Markov random field models

机译:使用Markov随机场模型的无监督纹理分割

获取原文
获取原文并翻译 | 示例

摘要

The problem of unsupervised segmentation of textured images is considered. The only explicit assumption made is that the intensity data can be modeled by a Gauss Markov random field (GMRF). The image is divided into a number of nonoverlapping regions and the GMRF parameters are computed from each of these regions. A simple clustering method is used to merge these regions. The parameters of the model estimated from the clustered segments are then used in two different schemes, one being all approximation to the maximum a posterior estimate of the labels and the other minimizing the percentage misclassification error. The proposed approach is contrasted with the algorithm of S. Lakshamanan and H. Derin (1989), which uses a simultaneous parameter estimation and segmentation scheme. The results of the adaptive segmentation algorithm of Lakshamanan and Derin are compared with a simple nearest-neighbor classification scheme to show that if enough information is available, simple techniques could be used as alternatives to computationally expensive schemes.
机译:考虑了纹理图像的无监督分割问题。唯一明确的假设是强度数据可以通过高斯马尔可夫随机场(GMRF)建模。将图像划分为多个非重叠区域,并从每个区域计算GMRF参数。一种简单的聚类方法用于合并这些区域。然后,从聚类片段中估计的模型参数将用于两种不同的方案,一种是全部近似到最大的标签后验估计,另一种是最小化错误分类误差的百分比。提出的方法与S.Lakshamanan和H.Derin(1989)的算法形成对比,后者使用同时参数估计和分段方案。将Lakshamanan和Derin的自适应分割算法的结果与简单的最近邻分类方案进行比较,以表明如果有足够的信息可用,则可以使用简单的技术替代计算昂贵的方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号