首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Approximating probabilistic inference in Bayesian belief networks
【24h】

Approximating probabilistic inference in Bayesian belief networks

机译:贝叶斯信念网络中的概率推论

获取原文
获取原文并翻译 | 示例

摘要

A belief network comprises a graphical representation of dependencies between variables of a domain and a set of conditional probabilities associated with each dependency. Unless rho =NP, an efficient, exact algorithm does not exist to compute probabilistic inference in belief networks. Stochastic simulation methods, which often improve run times, provide an alternative to exact inference algorithms. Such a stochastic simulation algorithm, D-BNRAS, which is a randomized approximation scheme is presented. To analyze the run time, belief networks are parameterized, by the dependence value D/sub xi /, which is a measure of the cumulative strengths of the belief network dependencies given background evidence xi . This parameterization defines the class of f-dependence networks. The run time of D-BNRAS is polynomial when f is a polynomial function. Thus, the results prove the existence of a class of belief networks for which inference approximation is polynomial and, hence, provably faster than any exact algorithm.
机译:信念网络包括域变量和与每个依赖性相关的一组条件概率之间的依赖性的图形表示。除非rho = NP,否则不存在有效,精确的算法来计算置信网络中的概率推断。随机仿真方法通常可以缩短运行时间,是精确推理算法的替代方法。提出了一种随机模拟算法D-BNRAS。为了分析运行时间,通过依赖值D / sub xi /对信念网络进行参数化,这是在给定背景证据xi的情况下,信念网络依赖项的累积强度的度量。此参数化定义了f依赖网络的类别。当f是多项式函数时,D-BNRAS的运行时间是多项式。因此,结果证明了存在一类置信网络,其推论近似是多项式的,因此证明比任何精确算法都快。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号