首页> 外文会议>Uncertainty in artificial intelligence >Error Estimation in Approximate Bayesian Belief Network Inference
【24h】

Error Estimation in Approximate Bayesian Belief Network Inference

机译:近似贝叶斯置信网络推断中的误差估计

获取原文
获取原文并翻译 | 示例

摘要

We can perform inference in Bayesian belief networks by enumerating instantiations with high probability thus approximating the marginals. In this paper, we present a method for determining the fraction of instantiations that has to be considered such that the absolute error in the marginals does not exceed a predefined value. The method is based on extreme value theory. Essentially, the proposed method uses the reversed generalized Pareto distribution to model probabilities of instantiations below a given threshold. Based on this distribution, an estimate of the maximal absolute error if instantiations with probability smaller than u are disregarded can be made.
机译:我们可以通过高概率地枚举实例,从而逼近边际,在贝叶斯信念网络中进行推理。在本文中,我们提出了一种确定实例化比例的方法,必须考虑这样的方法,以使边际中的绝对误差不超过预定义的值。该方法基于极值理论。本质上,所提出的方法使用反向广义Pareto分布对低于给定阈值的实例化概率进行建模。基于此分布,如果忽略概率小于u的实例化,则可以估算最大绝对误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号