首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Incorporating language syntax in visual text recognition with a statistical model
【24h】

Incorporating language syntax in visual text recognition with a statistical model

机译:将统计语言模型中的语言语法整合到视觉文本识别中

获取原文
获取原文并翻译 | 示例

摘要

The use of a statistical language model to improve the performance of an algorithm for recognizing digital images of handwritten or machine-printed text is discussed. A word recognition algorithm first determines a set of words (called a neighborhood) from a lexicon that are visually similar to each input word image. Syntactic classifications for the words and the transition probabilities between those classifications are input to the Viterbi algorithm. The Viterbi algorithm determines the sequence of syntactic classes (the states of an underlying Markov process) for each sentence that have the maximum a posteriori probability, given the observed neighborhoods. The performance of the word recognition algorithm is improved by removing words from neighborhoods with classes that are not included on the estimated state sequence. An experimental application is demonstrated with a neighborhood generation algorithm that produces a number of guesses about the identity of each word in a running text. The use of zero, first and second order transition probabilities and different levels of noise in estimating the neighborhood are explored.
机译:讨论了使用统计语言模型来提高用于识别手写或机器打印文本的数字图像的算法的性能。单词识别算法首先从词典中确定在视觉上类似于每个输入单词图像的一组单词(称为邻域)。单词的句法分类以及这些分类之间的转换概率被输入到Viterbi算法。在给定观察到的邻域的情况下,维特比算法为具有最大后验概率的每个句子确定句法类别的序列(基础马尔可夫过程的状态)。通过从具有估计状态序列中未包括的类的邻域中删除单词,可以提高单词识别算法的性能。邻域生成算法演示了一个实验性应用程序,该算法生成有关运行文本中每个单词的身份的大量猜测。探索了零,一阶和二阶跃迁概率以及不同水平噪声在估计邻域中的使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号