首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Covariance matrix estimation and classification with limited training data
【24h】

Covariance matrix estimation and classification with limited training data

机译:训练数据有限的协方差矩阵估计和分类

获取原文
获取原文并翻译 | 示例

摘要

A new covariance matrix estimator useful for designing classifiers with limited training data is developed. In experiments, this estimator achieved higher classification accuracy than the sample covariance matrix and common covariance matrix estimates. In about half of the experiments, it achieved higher accuracy than regularized discriminant analysis, but required much less computation.
机译:开发了一种新的协方差矩阵估计器,可用于设计训练数据有限的分类器。在实验中,该估计器比样本协方差矩阵和公共协方差矩阵估计具有更高的分类精度。在大约一半的实验中,它比正则判别分析获得更高的准确性,但所需的计算量却少得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号