首页> 外文期刊>Expert systems with applications >A new local covariance matrix estimation for the classification of gene expression profiles in high dimensional RNA-Seq data
【24h】

A new local covariance matrix estimation for the classification of gene expression profiles in high dimensional RNA-Seq data

机译:高维RNA-SEQ数据中基因表达谱分类的新局部协方差矩阵估计

获取原文
获取原文并翻译 | 示例

摘要

Recent developments in the next-generation sequencing based on RNA-sequencing (RNA-Seq) allow researchers to measure the expression levels of thousands of genes for multiple samples simultaneously. In order to analyze these kinds of data sets, many classification models have been proposed in the literature. Most of the existing classifiers assume that genes are independent; however, this is not a realistic approach for real RNA-Seq classification problems. For this reason, some other classification methods, which incorporates the dependence structure between genes into a model, are proposed. Quantile transformed Quadratic Discriminant Analysis (qtQDA) proposed recently is one of those classifiers, which estimates covariance matrix by Maximum Likelihood Estimator. However, MLE may not reflect the real dependence between genes. For this reason, we propose a new approach based on local dependence function to estimate the covariance matrix to be used in the qtQDA classification model. This new approach assumes the dependencies between genes are locally defined rather than complete dependency. The performances of qtQDA classifier based on two different covariance matrix estimates are compared over two real RNA-Seq data sets, in terms of classification error rates. The results show that using local dependence function approach yields a better estimate of covariance matrix and increases the performance of qtQDA classifier.
机译:基于RNA测序(RNA-SEQ)的下一代测序的最新发展允许研究人员同时测量多个样品的数千基因的表达水平。为了分析这些类型的数据集,文献中已经提出了许多分类模型。大多数现有分类器假设基因是独立的;然而,这不是真正的RNA-SEQ分类问题的现实方法。因此,提出了一些其他分类方法,其将基因与模型之间的依赖性结构结合在一起。定量转换的二次判别分析(QTQDA)最近提出的是那些分类器之一,其通过最大似然估计器估计协方差矩阵。然而,MLE可能无法反映基因之间的真实依赖。因此,我们提出了一种基于局部依赖函数的新方法来估计在QTQDA分类模型中使用的协方差矩阵。这种新方法假设基因之间的依赖关系是本地定义的而不是完整的依赖性。根据分类误差速率,将基于两种不同的协方差矩阵估计的基于两个不同的协方差矩阵估计的QTQDA分类器的性能。结果表明,使用局部依赖函数方法产生更好地估计协方差矩阵,增加了QTQDA分类器的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号