首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >/spl lambda//spl tau/-space representation of images and generalized edge detector
【24h】

/spl lambda//spl tau/-space representation of images and generalized edge detector

机译:/ spl lambda // spl tau /图像的空间表示和广义边缘检测器

获取原文
获取原文并翻译 | 示例

摘要

An image and surface representation based on regularization theory is introduced in this paper. This representation is based on a hybrid model derived from the physical membrane and plate models. The representation, called the /spl lambda//spl tau/-representation, has two dimensions; one dimension represents smoothness or scale while the other represents the continuity of the image or surface. It contains images/surfaces sampled both in scale space and the weighted Sobolev space of continuous functions. Thus, this new representation can be viewed as an extension of the well-known scale space representation. We have experimentally shown that the proposed hybrid model results in improved results compared to the two extreme constituent models, i.e., the membrane and the plate models. Based on this hybrid model, a generalized edge detector (GED) which encompasses most of the well-known edge detectors under a common framework is developed. The existing edge detectors can be obtained from the generalized edge detector by simply specifying the values of two parameters, one of which controls the shape of the filter (/spl tau/) and the other controls the scale of the filter (/spl lambda/). By sweeping the values of these two parameters continuously, one can generate an edge representation in the /spl lambda//spl tau/ space, which is very useful for developing a goal-directed edge detection scheme for a specific task. The proposed representation and the edge detector have been evaluated qualitatively and quantitatively on several different types of image data such as intensity, range, and stereo images.
机译:本文介绍了一种基于正则化理论的图像和表面表示方法。该表示基于从物理膜和板模型导出的混合模型。该表示称为/ spl lambda // spl tau /-表示,它具有两个维度:一维代表平滑度或缩放比例,另一维代表图像或表面的连续性。它包含在比例空间和连续函数的加权Sobolev空间中采样的图像/表面。因此,该新表示可以看作是众所周知的比例空间表示的扩展。我们已经通过实验表明,与两个极端组成的模型(即膜和板模型)相比,所提出的混合模型的结果有所改善。基于此混合模型,开发了一种通用边缘检测器(GED),该检测器在一个通用框架下包含了大多数众所周知的边缘检测器。只需指定两个参数的值即可从通用边缘检测器中获得现有的边缘检测器,其中一个参数控制滤镜的形状(/ spl tau /),另一个控制滤镜的比例(/ spl lambda / )。通过连续扫描这两个参数的值,可以在/ spl lambda // spl tau /空间中生成边缘表示,这对于开发针对特定任务的目标导向边缘检测方案非常有用。在几种不同类型的图像数据(例如强度,范围和立体图像)上,对所提出的表示形式和边缘检测器进行了定性和定量评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号