首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >A Bayesian framework for deformable pattern recognition with application to handwritten character recognition
【24h】

A Bayesian framework for deformable pattern recognition with application to handwritten character recognition

机译:贝叶斯可变形模式识别框架及其在手写字符识别中的应用

获取原文
获取原文并翻译 | 示例

摘要

Deformable models have recently been proposed for many pattern recognition applications due to their ability to handle large shape variations. These proposed approaches represent patterns or shapes as deformable models, which deform themselves to match with the input image, and subsequently feed the extracted information into a classifier. The three components-modeling, matching, and classification-are often treated as independent tasks. In this paper, we study how to integrate deformable models into a Bayesian framework as a unified approach for modeling, matching, and classifying shapes. Handwritten character recognition serves as a testbed for evaluating the approach. With the use of our system, recognition is invariant to affine transformation as well as other handwriting variations. In addition, no preprocessing or manual setting of hyperparameters (e.g., regularization parameter and character width) is required. Besides, issues on the incorporation of constraints on model flexibility, detection of subparts, and speed-up are investigated. Using a model set with only 23 prototypes without any discriminative training, we can achieve an accuracy of 94.7 percent with no rejection on a subset (11,791 images by 100 writers) of handwritten digits from the NIST SD-1 dataset.
机译:由于可变形模型具有处理较大形状变化的能力,因此最近已针对许多模式识别应用提出了可变形模型。这些提出的方法将图案或形状表示为可变形模型,其自身变形以与输入图像匹配,然后将提取的信息馈送到分类器中。建模,匹配和分类这三个组件通常被视为独立任务。在本文中,我们研究如何将可变形模型集成到贝叶斯框架中,作为用于建模,匹配和分类形状的统一方法。手写字符识别充当评估该方法的试验台。通过使用我们的系统,仿射变换以及其他手写体变体的识别是不变的。此外,不需要预处理或手动设置超参数(例如,正则化参数和字符宽度)。此外,还研究了关于模型灵活性约束的合并,子部件的检测和加速的问题。使用仅具有23个原型的模型集,无需进行任何判别训练,我们就可以实现94.7%的准确度,并且不会拒绝NIST SD-1数据集中的手写数字的子集(100个作者的11,791张图像)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号