首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Geometric and illumination invariants for object recognition
【24h】

Geometric and illumination invariants for object recognition

机译:用于物体识别的几何和照明不变性

获取原文
获取原文并翻译 | 示例

摘要

We propose invariant formulations that can potentially be combined into a single system. In particular, we describe a framework for computing invariant features which are insensitive to rigid motion, affine transform, changes of parameterization and scene illumination, perspective transform, and view point change. This is unlike most current research on image invariants which concentrates on either geometric or illumination invariants exclusively. The formulations are widely applicable to many popular basis representations, such as wavelets, short-time Fourier analysis, and splines. Exploiting formulations that examine information about shape and color at different resolution levels, the new approach is neither strictly global nor local. It enables a quasi-localized, hierarchical shape analysis which is rarely found in other known invariant techniques, such as global invariants. Furthermore, it does not require estimating high-order derivatives in computing invariants (unlike local invariants), whence is more robust. We provide results of numerous experiments on both synthetic and real data to demonstrate the validity and flexibility of the proposed framework.
机译:我们提出不变式,可以将其组合成一个单一系统。特别是,我们描述了一个框架,用于计算对刚体运动,仿射变换,参数化和场景照明的更改,透视图变换和视点更改不敏感的不变特征。这与大多数当前对图像不变量的研究不同,后者不仅仅关注几何或照明不变量。该公式可广泛应用于许多流行的基本表示形式,例如小波,短时傅立叶分析和样条曲线。通过采用可在不同分辨率级别上检查有关形状和颜色信息的配方,这种新方法既不严格全局也不是局部。它可以进行准局部化的层次形状分析,这在其他已知不变技术(例如全局不变式)中很少见。此外,在计算不变量时(与局部不变量不同),它不需要估计高阶导数,因为后者更为健壮。我们提供了关于合成和真实数据的大量实验结果,以证明所提出框架的有效性和灵活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号