首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >ICA mixture models for unsupervised classification of non-Gaussian classes and automatic context switching in blind signal separation
【24h】

ICA mixture models for unsupervised classification of non-Gaussian classes and automatic context switching in blind signal separation

机译:ICA混合模型,用于非监督分类的非高斯分类和盲信号分离中的自动上下文切换

获取原文
获取原文并翻译 | 示例

摘要

An unsupervised classification algorithm is derived by modeling observed data as a mixture of several mutually exclusive classes that are each described by linear combinations of independent, non-Gaussian densities. The algorithm estimates the density of each class and is able to model class distributions with non-Gaussian structure. The new algorithm can improve classification accuracy compared with standard Gaussian mixture models. When applied to blind source separation in nonstationary environments, the method can switch automatically between classes, which correspond to contexts with different mixing properties. The algorithm can learn efficient codes for images containing both natural scenes and text. This method shows promise for modeling non-Gaussian structure in high-dimensional data and has many potential applications.
机译:通过将观察到的数据建模为几种互斥类的混合物来导出无监督分类算法,这些互斥类分别由独立的非高斯密度的线性组合描述。该算法估计每个类别的密度,并能够使用非高斯结构对类别分布进行建模。与标准的高斯混合模型相比,该新算法可以提高分类精度。当应用于非平稳环境中的盲源分离时,该方法可以在类别之间自动切换,这些类别对应于具有不同混合属性的上下文。该算法可以为包含自然场景和文本的图像学习有效的代码。该方法显示了在高维数据中建模非高斯结构的希望,并具有许多潜在应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号