首页> 外文会议>Conference on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery IX Apr 21-24, 2003 Orlando, Florida, USA >ICA Mixture Model for Unsupervised Classification of non-Gaussian Classes in Multi/Hyperspectral Imagery
【24h】

ICA Mixture Model for Unsupervised Classification of non-Gaussian Classes in Multi/Hyperspectral Imagery

机译:多/高光谱图像中非监督分类的非高斯类别的ICA混合模型

获取原文
获取原文并翻译 | 示例

摘要

Conventional remote sensing classification techniques model the data in each class with a multivariate Gaussian distribution. Inadequacy of such algorithms stems from Gaussian distribution assumption for the class-component densities, which is only an assumption rather than a demonstrable property of natural spectral classes. In this paper, we present an Independent Component Analysis (ICA) based approach for unsupervised classification of multi/hyperspectral imagery. ICA employed for a mixture model, estimates the data density in each class and models class distributions with non-Gaussian structure (i.e. leptokurtic or platykurtic p.d.f.), formulating the ICA mixture model (ICAMM). It finds independent components and the mixing matrix for each class, using the extended information-maximization learning algorithm, and computes the class membership probabilities for each pixel. We apply the ICAMM for unsupervised classification of images from a multispectral sensor - Positive Systems Multi-Spectral Imager, and a hyperspectral sensor - Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Four feature extraction techniques: Principal Component Analysis, Segmented Principal Component Analysis, Orthogonal Subspace Projection and Projection Pursuit have been considered as a preprocessing step to reduce dimensionality of the hyperspectral data. The results demonstrate that the ICAMM significantly outperforms the K-means algorithm for land cover classification of remotely sensed images.
机译:传统的遥感分类技术使用多元高斯分布对每个类​​别中的数据进行建模。此类算法的不足之处在于类成分密度的高斯分布假设,这只是一个假设,而不是自然光谱类别的可证明性质。在本文中,我们提出了一种基于独立分量分析(ICA)的多/高光谱图像无监督分类方法。将ICA用于混合模型,估计每个类别的数据密度,并使用非高斯结构(即leptokurtic或platykurtic p.d.f.)对类别分布进行建模,从而制定ICA混合模型(ICAMM)。它使用扩展的信息最大化学习算法找到每个类别的独立成分和混合矩阵,并计算每个像素的类别隶属度。我们将ICAMM应用于来自多光谱传感器(正系统多光谱成像仪和高光谱传感器-机载可见/红外成像光谱仪(AVIRIS))的无监督图像分类。四种特征提取技术:主成分分析,分段主成分分析,正交子空间投影和投影追踪已被视为减少高光谱数据维数的预处理步骤。结果表明,ICAMM在遥感图像的土地覆盖分类方面明显优于K-means算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号